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Abstract

We define 2 operators on relations over natural numbers such that
they generalize the operators ’+’ and ’*’ and show that the membership
and emptiness problem of relations constructed from finite relations with
these operators and ∪ is decidable. This generalizes Presburger arithmetics
and allows to decide the reachability problem for those Petri nets where
inhibitor arcs occur only in some restricted way. Especially the reachability
problem is decidable for Petri nets with only one inhibitor arc, which solves
an open problem in [KLM89] . Furthermore we describe the corresponding
automaton having a decidable emptiness problem.

1 Introduction

The decidability of the reachability problem in Petri nets without inhibitor arcs
is proved in [May84] and later in [Kos84] and [Lam92]. On the other hand, the
reachability problem is undecidable for Petri nets with two inhibitor arcs which
follows from [Min71]. An open problem in [KLM89] was the reachability problem
for Petri nets with one inhibitor arc.
An important method is the use of semilinear sets which are defined using the
operators +, ∗, ∪ over finite sets of vectors (multisets). Semilinear sets are the so-
lutions of Presburger formula, where Presburger arithmetic is the first order logic
over the natural numbers and the addition. Presburger arithmetic is decidable
and semilinear sets are closed under ∩ and complement [GS65],[ES69].
But a reachability relation for a Petri net is in general not semilinear. For that
reason the basic idea of this paper is to replace + and ∗ by suitable operations
◦Q and ∗Q which are able to express a reachability relation as the sequence of
relations (like the transitive closure used in [Imm87] to characterize NL with first
order logic or more generally in [Avr03]).
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But the transitive closure over first order logic over natural numbers with the
addition immediately becomes undecidable. For that reason the important prin-
ciple of monotonicity in the reachability relation of Petri nets is combined with
the idea of the transitive closure. That means the operator ∗Q is a monotone
transitive closure (see Corollary 3.2). We consider the following three steps:

1. One application of∗Q already allows us to express the reachability problem
in a Petri net without inhibitor arcs (Corollary 2.1).

2. A second application of∗Q (containing the first one in a nested way) allows
us to express the reachability problem in a Petri net with one inhibitor arc
(Lemma 2.3).

3. Arbitrary nested applications of ∗Q allow us to express the reachability
problem in a Petri net for which there exists an ordering of the places such
that a place has an inhibitor arc to all those transitions which have an
inhibitor arc from a preceding place (Theorem 6.1).

In Section 3 we use expressions consisting of the operators ∪, ◦Q and∗Q on sets
of multisets in a special form (Lemmata 3.1 and 3.4 show that we can bring every
such expression in this form), which models the idea of a nested Petri net: The
firing behavior of a complex (nested) transition is linked to firing sequences in
inner Petri nets by a semilinear relation (unlike in the structured nets in [CK86]).
The connection between these inner Petri nets corresponds to the chain of vector
addition systems used in [Kos84] and it is described by the same semilinear rela-
tion. The main difference to the structure of the proofs in [Kos84] and [Lam92]
is that states are not anymore necessary since their function is instead fulfilled
(Section 4.4) by the nestedness of expressions (like regular expression replace a
finite automaton).

Furthermore we define a condition (normal form T corresponding to the prop-
erty Θ in [Kos84]), which allows to check the emptiness of the expressed set of
multisets, we define a size of the expressions leading to a Noetherian order and
construct an algorithm in Section 4 which finds an equivalent expression fulfill-
ing condition T . Each step of the algorithm constructs an equivalent expression
which is smaller with respect to the defined size. Some kind of pumping prop-
erty (Lemma 4.1) which ensures the existence of arbitrary high firing sequences
if condition T is fulfilled is proved in Section 5.

The most general result (see Step 3 above) is described in Section 6 This allows
to decide the expressed reachability problem. Sections 7 and 8 describe the
conclusions for emptiness problems for automata.

An overview over the dependencies in this chapter is given in Figure 1. The end
of the appendix contains a repetition of all definitions. The contents of this paper
mainly corresponds to Chapter 5 in the habilitation-thesis [Rei05].
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1.1 Multisets

For the sake of a flexible description, we use multi-sets instead of vectors. A
multi-set over B is a function in NB.
We might write a multiset f ∈ NB as a set {b 7→ f(b) | b ∈ B}, as a table[

b1
f(b1)

, b2
f(b2)

, ..., bn

f(bn)

]
or as an n-ary vector


f(b1)
f(b2)

...
f(bn)

. For the latter, we have to

assume an ordering on B = {b1, b2, ..., bn} (without relevance to the contents),
and in the first two descriptions, we only need to write those b’s with f(b) > 0.
Although we do not a priori limit the size of B, we only use multisets for a finite
B in this paper. For multisets, we use the variables c,d, e, f ,g,h,m,n, r, s,x,y,
and for sets of multisets, we use the capitals E,L,M,N,R and Id (the latter will
denote the identity for the operator ◦Q to be defined).
For A ⊆ B, we regard functions in NA ⊆ NB as extended to zero for undefined
values. This allows us to add any two multisets f ∈ NA and g ∈ NB and obtain a
multiset in (f + g) ∈ NA∪B with (f + g)(x) = f(x) + g(x) in the same way as we
would add the corresponding vectors assuming an ordering on A∪B. The neutral
element for addition is ∅ with ∅(x) = 0 for all x. It holds NA ∩ NB = NA∩B.
The restriction f |A of a multi-set f ∈ NB to A is

f |A (b) := f(b) if b ∈ A else f |A (b) := 0.

This means f |A:= {b 7→ f(b) | b ∈ A} . The complement operator is f |A:= {b 7→
f(b) | b 6∈ A} , thus f = f |A +f |A.
For a finite set M = {m1, ...,mk} ⊆ NA of multi-sets,

M∗ := {a1m1 + ... + akmk| ∀i ≤ k ai ∈ N}

is the set of all linear combinations generated by M. More generally, by M0 :=
{∅} and Mi+1 := Mi + M, we can define M∗ :=

⋃
i M

i.

1.1.1 New operator on multisets

For an unambiguous1 and injective binary relation Q, we define the operator ◦Q

on two sets of Multisets M and N as

N◦QM :=
{

n |π1(Q) +m |π2(Q)

∣∣∣n ∈ N,m ∈ M,∀(a, b) ∈ Q n(a) = m(b)
}

.

This means if n and m “match” according to Q, then the values for an a ∈
π1(Q) = {a|(a, b) ∈ Q} in n and the values for a b ∈ π2(Q) = {b|(a, b) ∈ Q} in
m are “used up against each other” and the rest is added. For example,{ 3

6
1

,

 2
5
2

}◦{(b1,b2)}

{ 8
3
1

,

 7
2
2

,

 5
2
3

} =

{ 8
6
2

,

 7
5
4

,

 5
5
5

}
1A binary Q is unambiguous if Q−1 is injective.
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or { 3
6
1

,

 2
5
2

}◦{(b3,b3)}

{ 8
3
1

,

 7
2
2

,

 5
2
3

} =

{(
11
9

)
,
(

9
7

)}
The latter example shows that the dimension is necessarily reduced (b3 is used
up on both sides) if π1(Q) ∩ π2(Q) is not empty. We will later need ◦̂A :=
◦{(a,a)|a∈A} to get N◦̂AM = {n |A +m |A |n ∈ N,m ∈ M,∀a ∈ A n(a) = m(a)}.
For example ◦{(b3,b3)} = ◦̂{b3}.
If π1(Q) and π2(Q) are disjoint, we define IdQ := {{a 7→ 1, b 7→ 1} | (a, b) ∈ Q}∗
which is the neutral element for ◦Q. Obviously, it holds N◦∅M = N + M which
makes + with the neutral element Id∅ = {∅} a special case of the ◦Q operator.

Furthermore, for Q with π1(Q) and π2(Q) disjoint, we define ∗0

Q(M) := IdQ,

∗i+1

Q (M) :=∗i

Q(M)◦Q(M+IdQ) and∗Q(M) :=
⋃

i∗i

Q(M). Again,∗∅(M) =
M∗ is a special case.

It is easy to see that∗Q(M) is the closure of M∪IdQ under ◦Q and the addition
◦∅:
If f ,g ∈∗Q(M) then there are i, j ∈ N with f ∈∗i

Q(M) and g ∈∗j

Q(M) thus

{f}◦Q{g} ⊆∗i

Q(M)◦Q∗j

Q(M) =∗i+j

Q (M) ⊆∗Q(M).

Let f ′ = f + {a 7→ g(b), b 7→ g(b) | (a, b) ∈ Q} ∈ f + IdQ and g′ = g + {a 7→
f(a), b 7→ f(a) | (a, b) ∈ Q} ∈ g + IdQ. Then f + g = f ′ |π1(Q) +g′ |π2(Q)∈
{f ′}◦Q{g′} ⊆ ∗i

Q(M)◦Q∗j

Q(M) = ∗i+j

Q (M) ⊆ ∗Q(M) according to the defi-

nition of ◦Q. Clearly ∗Q(M) =∗Q(M) + IdQ.

For example, for i > 0 we have

∗i

{(b1,b2)}

({ 2
5
1

}) =

{ 2 + j
2 + 3i + j

i


∣∣∣∣∣ j ≥ 0

}
leading to

∗i+1

{(b1,b2)}

({ 2
5
1

}) =∗i

{(b1,b2)}

({ 2
5
1

})◦{(b1,b2)}

{ 2 + k
5 + k

1


∣∣∣∣∣ k ≥ 0

}

=

{ 2 + j
5 + 3i + j

i + 1


∣∣∣∣∣ j ≥ 0

}

(by “matching” with k = 3i + j) and

∗{(b1,b2)}

({ 2
5
1

}) =

{ j
j
0

,

 2 + j
2 + 3i + j

i


∣∣∣∣∣ i, j ≥ 0

}

Remark: Adding IdQ is a crucial point: It corresponds to the monotonicity in
Petri nets. Without this, deciding emptiness for the expressions would become
undecidable.
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1.1.2 Properties of the new operators

Obviously, it holds N◦QM = M◦Q−1N. Furthermore, we can express the inter-
section of N,M ⊆ NA by N◦Q′L◦Q′′M = N ∩ M with Q′ := {(a, a′) | a ∈ A},
Q′′ := {(a′′, a) | a ∈ A} and L := {{a 7→ 1, a′ 7→ 1, a′′ 7→ 1} | a ∈ A}∗.
Note here that, in general, N◦Q′L◦Q′′M can only be written without brackets
because π1(Q

′′) ∪ ({a | ∃ f ∈ M, f(a) > 0} \ π2(Q
′′)) and π2(Q

′) ∪ ({a | ∃ f ∈
N, f(a) > 0} \ π1(Q

′)) are disjoint. If, additionally, π2(Q
′′) and {a | ∃ f ∈

N, f(a) > 0} are disjoint and {a | ∃ f ∈ M, f(a) > 0} and π1(Q
′)) are disjoint,

then N◦Q′L◦Q′′M = L◦Q′−1∪Q′′(M + N).

1.1.3 Semilinearity

The class of semilinear sets is the smallest class of sets of multisets containing all
finite sets of multisets and being closed under ∪, + and ∗. The semilinear sets
are also closed under ∩, as shown in [GS65] and [ES69]. As a normal form to
express semilinear sets, we will use the union of linear sets of the form c + Γ∗ for
a constant c ∈ NA and periods Γ ⊆ NA. (To improve efficiency of the algorithm
described in this paper, we might demand that the union is disjoint; but efficiency
is not an issue.)
The operator ◦Q preserves semilinearity: Assume N and M are semilinear sets
over A, then

N′ := {f ′ | ∃f ∈ N ∀a ∈ π1(Q) f ′(a′) = f(a) ∧ f ′(a) = 0 and
∀a /∈ π1(Q) f ′(a) = f(a)},

M′ := {f ′ | ∃f ∈ M ∀a ∈ π2(Q) f ′(a′) = f(a) ∧ f ′(a) = 0 and
∀a /∈ π2(Q) f ′(a) = f(a)} and

E′
Q := {{a′ 7→ 1, b′ 7→ 1}, {c 7→ 1} | (a, b) ∈ Q, c ∈ A}∗

= {f | ∀(a, b) ∈ Q f(a′) = f(b′)}

are as well semilinear sets over the set A ∪ π1(Q)′ ∪ π1(Q)′ which is extended by
new elements. Thus, N◦QM = ((N′ + M′) ∩ E′

Q) |π1(Q)′∪π1(Q)′ is semilinear.
Since the closure under ∩ is effective, this will allow a decision algorithm to

continue with the representation
l⋃

j=1

Lj by linear sets Lj.

On the other hand,∗Q does not preserve semilinearity as the following example

shows: Let M :=

 1
0
0

+

 0
1
2

∗

, then ∗{(b3,b2)}(M) =

{ a
b
c


∣∣∣∣∣ c ≤ b2a

}
which

is not semilinear.
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2 The reachability relation for Petri nets

2.1 The reachability relation for Petri nets without in-
hibitor arcs

We describe a Petri net as the triple N = (P, T,W ) with the places P , the
transitions T and the weight function W ∈ NP×T∪T×P . A transition t ∈ T can
fire from a marking m ∈ NP to a marking m′ ∈ NP , denoted by m[t〉m′, if

m−W (., t) = m′ −W (t, .) ∈ NP .

A firing sequence w = t1...tn ∈ T ∗ can fire from m0 to mn, denoted by m0[w〉mn,
if m1, ...mn−1 exist with m0[t1〉m1[t2〉...[tn〉mn. The reachability problem is to
decide for a given net N with start- and end markings m0,me ∈ NP , if there is
a w ∈ T ∗ with m0[w〉me.
Let P+ := {p+ | p ∈ P} and P− := {p− | p ∈ P} be copies of the places. For
any multiset, m we define the corresponding copies m− := {p− 7→ m(p) | p ∈ P}
and m+ := {p+ 7→ m(p) | p ∈ P}. Then, we can define the reachability relation
for a transition t as

R(t) :=
{
m− + m′+

∣∣m[t〉m′}
=
{

r ∈ NP+∪P−
∣∣∣ ∀p ∈ P r(p−)−W (p, t) = r(p+)−W (t, p) ∈ N

}
and the reachability relation for a set of transitions T as R(T ) :=

⋃
t∈T

R(t).

The important property of monotonicity means that whenever m[w〉m′, then
also (m + n)[w〉(m′ + n) for any n ∈ NP . This corresponds to adding IdP :=
IdP̂ with P̂ := {(p+, p−) | p ∈ P} and R(t) can be written as the linear set
R(t) = ct + IdP using ct with ct(p

−) := W (p, t) and ct(p
+) := W (t, p) for all

p ∈ P . The reachability relation for the concatenation of two firing sequences
is described by R(w1w2) = R(w1)◦PR(w2) with ◦P := ◦P̂ and the iteration

is done by ∗P := ∗P̂ . We define the reachability relation of the Petri net

N as R(N) := R(T ∗) := ∗P (R(T )). The reachability problem formulates as
(m−

0 + m+
e ) ∈ R(N).

Corollary 2.1 There is a firing sequence w ∈ T ∗ with m0[w〉me in N if and
only if

m+
0 ◦PR(N)◦Pm−

e = (m−
0 + m+

e )◦̂P+∪P−R(N) = {∅}.

(If there is no w ∈ T ∗ with m0[w〉me, we have (m−
0 + m+

e )◦̂P+∪P−R(N) = ∅.)
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Example:
Consider the following Petri net N with
R(t1) = {p−2 7→ 1, p+

1 7→ 2}+ IdP ,
R(t2) = {p−1 7→ 3, p+

2 7→ 2}+ IdP ,

and thus, R(T ) =
{[

p−2
1

, p+
1
2

]
,
[

p−1
3

, p+
2
2

]}
.

Let furthermore m0 = {p1 7→ 1, p2 7→ 1}

and me = {p1 7→ 1, p2 7→ 2}.
p2��

��

t1

t2

p1��
��

� 2

6

-
2

3

?

By concatenating, we get for example

R(t1t2) = R(t1)◦PR(t2) =
[

p−2
1

, p−1
1

, p+
2
2

]
+ IdP and

R(t1t1t2) =
[

p−2
2

, p+
2
2

, p+
1
1

]
+ IdP .

In this way we get (m−
0 + m+

e ) =
[

p−1
1

, p−2
1

, p+
1
1

, p+
2
2

]
∈ R(t1t2t1t1t2) =

[
p−1
1

, p−2
1

, p+
1
1

, p+
2
2

]
+ IdP ⊆ R(N). -

p11 2 3

6p2

1

2

H
HHH

HHj
t1

Q
Q

Q
Q

Q
Q

Q
QQk

t2

@
@

@I
-

@
@

@I
-

-

By further concatenating and iterating, we get

R((t1t2)
∗) =

[
p−2
1

, p+
2
1

]
+
[

p−1
1

, p+
2
1

]∗
+ IdP ,

R(t2t1) = R(t2)◦PR(t1) =
[

p−1
3

, p+
2
1

, p+
1
2

]
+ IdP ,

R((t2t1)
∗) =

[
p−1
2

, p+
1
2

]
+
[

p−1
1

, p+
2
1

]∗
+ IdP ,

R(t2t1t1) =
[

p−1
3

, p+
1
4

]
+ IdP ,

R((t2t1t1)
∗) =

[
p−1
3

, p+
1
3

]
+
[

p+
1
1

]∗
+ IdP ,

R((t1t1t2)
∗) =

[
p−2
2

, p+
2
2

]
+
[

p+
1
1

]∗
+ IdP ,

R((t1t2t1)
∗) =

[
p−2
1

, p+
2
1

, p−1
1

, p+
2
1

]
+
[

p+
1
1

]∗
+ IdP ,

...,

which finally yields R(N) = R(T ∗) =∗P

({[
p−2
1

, p+
1
2

]
,
[

p−1
3

, p+
2
2

]})
={[

p−2
1

, p+
1
2

]
,
[

p−1
3

, p+
2
2

]}∗
+ IdP ∪{[

p−2
1

, p+
2
1

]
,
[

p−1
2

, p+
1
2

]}
+
{[

p−1
1

, p+
2
1

]
,
[

p−2
1

, p+
1
2

]
,
[

p−1
3

, p+
2
2

]}∗
+ IdP ∪{[

p−1
3

, p+
1
3

]
,
[

p−2
2

, p+
2
2

]
,
[

p−2
1

, p+
2
1

, p−1
1

, p+
2
1

]
,
[

p−1
3

, p+
2
2

]
,
[

p−2
2

, p+
1
2

, p+
2
1

]
,
[

p−1
1

, p−2
1

, p+
1
3

]
,[

p−2
2

, p+
1
4

]}
+
{[

p−2
1

, p+
1
2

]
,
[

p−1
3

, p+
2
2

]
,
[

p−1
1

, p+
2
1

]
,
[

p+
1
1

]
,
[

p+
2
1

]}∗
+ IdP
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2.2 Petri nets with inhibitor arcs

An inhibitor arc from a place to a transition means that the transition can only
fire if no token is on that place. We describe such a Petri net as the 6-tuple
(P, T,W, I,m0,me) with the places P , the transitions T , the weight function
W ∈ NP×T∪T×P , the inhibitor arcs I ⊆ P × T and, the start and end markings
m0,me ∈ NP . We will denote an inhibitor arc in the pictures by ————• .

A transition t ∈ T can fire from a marking m ∈ NP to a marking m′ ∈ NP ,
denoted by m[t〉m′ if

m−W (., t) = m′ −W (t, .) ∈ NP and ∀p ∈ P (p, t) ∈ I → m(p) = 0.

A firing sequence w = t1...tn ∈ T ∗ can fire from m0 to mn, denoted by m0[w〉mn,
if there exist intermediate markings m1, ...mn−1 with m0[t1〉m1[t2〉...[tn〉mn.

The reachability problem for a Petri net (P, T, W, I,m0,me) is to decide, whether
there exists a w ∈ T ∗ with m0[w〉me.

In the following two lemmata, we restrict the cases for which we have to regard
the reachability problem. The aim of the first lemma is to make the reacha-
bility problem symmetric, that means the reachability problem is the same for
(P, T,W−1, I,me,m0) with W−1 := {(x, y) | (y, x) ∈ W}:

Lemma 2.1 Each Petri net (P, T,W, I,m0,me) can be changed in such a way
that the condition ∀p ∈ P, t ∈ T (p, t) ∈ I → W (t, p) = 0 holds without changing
the inhibitor arcs or the reachability problem.

Proof: Consider a transition t ∈ T such that there exists a p ∈ P with (p, t) ∈ I
and W (t, p) = x > 0. This is depicted by

p��
��

t•
�

x

We add a new transition t′ in T ′ := T ∪ {t′} and two new places p′ and p′′ in
P ′ := P ∪ {p′, p′′}. Furthermore, we put an additional token on p′′ in the start-
marking m′

0 := m0 + {p′′ 7→ 1} and the end-marking m′
e := me + {p′′ 7→ 1}. Set

W ′(t′, .) := W (t, .) + {p′′ 7→ 1} which means that all the arcs from the transition
t and an arc to p′′ are now arcs from the transition t′. An arc from p′′ to t is then
added, which means W ′(., t) := W (., t) + {p′′ 7→ 1}. Set W ′(t, .) := W ′(., t′) :=
{p′ 7→ 1}, W ′(ta, .) := W (ta, .) + {p′′ 7→ 1} and W ′(., ta) := W (., ta) + {p′′ 7→ 1}
for every ta ∈ T \ {t}.
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p��
��

t

p′��
��

t′ p′′��
��

ta

•
?

x

?

-

H
HHH

HHY

H
HHH

HHY

H
HHH

HHY
HHH

HHHj

There will always be exactly one token on either p′ or p′′. If t fires, then no token
is on p′′ and so t′ is the only transition which can fire. The firing of tt′ (together)
has the same effect on the net as the firing of t before the change; hence, the
reachability problem remains the same.
A general aim of the decision algorithm explained below is to reduce the number
of places and transitions and, therefore, transfer the information to a structural
description. However, in the next lemma we do a step in the opposite direction
in order to make the description of the reachability relation easier.

Lemma 2.2 Each Petri net (P, T, W, I,m0,me) can be changed in a way such
that the condition ∀p ∈ P, t ∈ T (p, t) ∈ I → m0(p) = me(p) = 0 holds by chang-
ing neither the inhibitor arcs, the condition in Lemma 2.1 nor the reachability
problem.

Proof: We add two new transitions t and t′ in T ′ := T ∪ {t, t′}, and three new
places p, p′ and p′′ in P ′ := P ∪ {p, p′, p′′}. Set W ′(t, .) := m0 + {p′ 7→ 1},
W ′(., t′) := me + {p′ 7→ 1}, W ′(., t) := {p 7→ 1}, W ′(t′, .) := {p′′ 7→ 1}, m′

0 :=
{p 7→ 1} and m′

e := {p′′ 7→ 1}. For every ta ∈ T , we set W ′(ta, .) := W (ta, .) +
{p′ 7→ 1} and W ′(., ta) := W (., ta) + {p′ 7→ 1}. This prevents a firing before t
and after t′. Therefore, t is the first and t′ is the last transition to fire, but they
can only fire once. Obviously, the reachability problem from the marking after
the firing of t to the marking before the firing of t′ is the same as before.

2.3 The reachability relation for Petri nets with one in-
hibitor arc

Let us consider a Petri-net N = (P, T,W, {(p1, t̂)},m0,me) having the property
of lemmata 2.1 and 2.2. As in the case of no inhibitor arcs, we can describe
by R(N ′) = ∗P (R(T \ {t̂})) for the Petri net N ′ = (P, T \ {t̂}, W |

P×{t̂}∪{t̂}×P
)

the reachability relation for firing sequences w ∈ (T \ {t̂})∗. The restriction
to those firing sequences starting and ending with markings without tokens on
p1 can be described by R(tp1(N

′)) := {r ∈ R(N ′) | r(p−1 ) = r(p+
1 ) = 0}. In

R(N) :=∗P\{p1}(R(tp1(N
′)) ∪R(t̂)) with R(t̂) = ct̂ + IdP\{p1} we iterate these

10



parts together with the alternative of using t̂. Generalizing Corollary 2.1 we get
the following:

Lemma 2.3 Given a Petri-net N = (P, T, W, {(p1, t̂)},m0,me) with only one
inhibitor arc (p1, t̂) having the property of lemmata 2.1 and 2.2, then there is a
firing sequence w ∈ T ∗ with m0[w〉me if and only if

m+
0 ◦P\{p1}R(N)◦P\{p1}m

−
e = (m−

0 + m+
e )◦̂P+∪P−\{p+

1 ,p−1 }
R(N) = {∅}.

(If there is no such w ∈ T ∗, we have (m−
0 + m+

e )◦̂P+∪P−\{p+
1 ,p−1 }

R(N) = ∅.)
Proof: A firing sequence w ∈ T ∗ can be decomposed in minimal firing sequences
w1...wk = w having the property m0[w1〉m1[w2〉...[wk〉mk with mk = me such
that mi(p1) = 0 for all i ≤ k.
Each wi is either equal to t̂ or in (T \ {t̂})∗. This holds since the occurrence of t̂
in a wi with |wi| > 1 would mean that, at that time during the firing of wi, there
is no token on p1, and thus, wi would not be minimal.
If wi ∈ (T \ {t̂})∗ then m−

i−1 + m+
i ∈ R(N ′). Then from mi−1(p1) = 0 and

mi(p1) = 0 it follows that m−
i−1 + m+

i ∈ R(tp1(N
′)). Otherwise, if wi = t̂, we

have m−
i−1 + m+

i in R(t̂).

Concatenating all with the operator∗P\{p1} leads to m−
0 +m+

e is in R(N), which
means (m−

0 + m+
e )◦̂P+∪P−R(N) = {∅}.

The other direction follows simply by composing firing sequences.
Example:
Consider the Petri net N

p2��
��

t7

t̂

p1��
��

p3��
��

t8

?

� �5 7

6

- -
3 2

•

with the start marking {p2 7→ 4, p3 7→ 2} and the end marking {p2 7→ 4, p3 7→ 3}.
We have R(t7) = {p−2 7→ 1, p+

1 7→ 3}+ IdP , R(t8) = {p−1 7→ 2, p+
3 7→ 1}+ IdP and

R(t̂) = {p−3 7→ 7, p+
2 7→ 5}+ IdP\{p1}. This yields

R(N ′) = R((P, {t7, t8}, W |
P×{t̂}∪{t̂}×P

)) =∗P

({[
p−2
1

,
p+

1

3

]
,

[
p−1
2

,
p+

3

1

]})
={[

p−2
1

, p+
1
3

]
,
[

p−1
2

, p+
3
1

]
,
[

p−2
1

, p+
1
1

, p+
3
1

]
,
[

p−2
1

, p−1
1

, p+
3
2

]
,
[

p−2
2

, p+
1
2

, p+
3
2

]
,
[

p−2
2

, p+
3
3

]}∗
+ IdP

and R(tp1(N
′)) = R(N ′)◦{(p−1 ,x),(p+

1 ,y)}{∅} =
{[

p−2
2

, p+
3
3

]}∗
+ Id{p2,p3}.

We can cut the firing sequences in (t7 + t8 + t̂)∗ = ((t7 + t8)
∗ + t̂)∗ into parts

in (t7 + t8)
∗ and t̂ all starting and ending with no token on p1. This yields

R(N) :=∗{p2,p3}(R(tp1(N
′)) ∪R(t̂)){[

p−2
2

, p+
3
3

]
,
[

p−3
7

, p+
2
5

]
,
[

p−2
2

, p−3
4

, p+
2
5

]
,
[

p−2
4

, p−3
1

, p+
2
5

]
,
[

p−3
7

, p+
2
3

, p+
3
3

]
,
[

p−3
7

, p+
2
1

, p+
3
6

]
, ...,[

p−2
4

, p−3
2

, p+
3
8

]
,
[

p−2
5

, p−3
1

, p+
2
1

, p+
3
7

]
,
[

p−3
6

, p+
2
4

, p+
3
3

]
,
[

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]}∗
+ Id{p2,p3}.
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3 Nested Petri Nets as normal form for expres-

sions

From now on we use the variables t, T,N as expressions describing transitions,
sets of transitions and (sub-)nets. For an expression e, we will always define a
carrier set C(e) ⊇ {a | ∃ f ∈ R(e), f(a) > 0}}. The function R was in the
previous section giving the reachability relation R(e) ⊆ NC(e) for an e of the
form t, N or T . Now, we use R as the evaluation function for an expression
where the expression operators∗P ,◦Q,∪ and +, and the operator ∩ will always
be defined on expressions such that they commute with R.
Let the expression for an elementary transition have the form t = Lt, where Lt is
an expression for the linear set Lt = R(Lt) = ct + Γ∗

t described by a (constant)
multiset ct and a finite set of (period-) multisets Γt. For example, in Sections 2.1
and 2.3, we have Γt = {{p− 7→ 1, p+ 7→ 1} | p ∈ P} leading to Γ∗

t = IdP . We
have C(t) := C(Lt) := P− ∪ P+ ∪ {a | ∃ f ∈ {ct} ∪ Γt, f(a) > 0}.
Let the expression for sets of transitions be T = t1 ∪ t2... ∪ tl for expressions for
transitions ti ∈ T for i ≤ l, and the expression for a sub-net with places PT and
transitions T be N =∗PT

(T ). Let C(N) := C(T ) :=
⋃

t∈T C(t).
Let the expression for a generalized transition have the form t = Lt◦̂AtKt,
where Lt again expresses a linear set, and Kt is a set of sub-nets and inter-
preted as expression Kt =

∑
Ni∈Kt

Ni where the C(Ni) are pairwise disjoint and

At := C(Kt) :=
⋃

Ni∈Kt
C(Ni).

We define C(t) := {a | ∃ f ∈ {ct} ∪ Γt, f(a) > 0} \ At. This means that the
behavior of t is mainly described by the linear set ct + Γ∗

t ⊆ NC(t)∪At but it is
additionally controlled by the reachability in the sub-nets Ni.
For example, the reachability question for a complete net in Corollary 2.1 and
Lemma 2.3 is formulated as the control by a (sub-)net in t with R(t) = (m−

0 +
m+

e )◦̂P+∪P−R(N) respectively R(t) = (m−
0 + m+

e )◦̂P+∪P−\{p+
1 ,p−1 }

R(N) in a way

that already has this normal form for expressions with ct = (m−
0 + m+

e ) and
Γt = ∅. However, the behavior on the outside is trivial (∅ or {∅}) because

C(t) = ∅ in this case. The same holds for (m−
0 + m+

e )◦̂P+
Tg−1

∪P−
Tg−1

∗PTg−1
(Tg−1)

in Theorem 6.1.
The decision algorithm in Section 4 will start with an expression of the form
T = {t} by keeping in mind that, according to Lemma 2.3, R(T ) = R(t) = {∅}
if there is a firing sequence w ∈ T ∗ with m0[w〉me. Otherwise R(T ) = R(t) = ∅
if there is not.
An example for the general case is R(tp1(N

′)) := {r ∈ R(N ′) | r(p−1 ) = r(p+
1 ) =

0} form Section 2.3. Here we need Lemma 3.1 to construct the expression
t{p1}(N

′) of the desired normal form with R(tp1(N
′)) = R(t{p1}(N

′)). Again,
th in Theorem 6.1 has the normal form for expressions.
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Lemma 3.1 Let N be an expression for a subnet. Then, we can construct an
equivalent expression for a transition t(N) with R(t(N)) = R(N) and tP ′(N)
with R(tP ′(N)) = {m ∈ R(N) | ∀p ∈ P ′ m(p−) = m(p+) = 0}.

Proof: Define t(N) by ct(N) := ctP ′ (N) := ∅, Γt(N) := {{q 7→ 1, q̂ 7→ 1} | q ∈
C(N)} and Kt(N) := {N̂} where N̂ is the result of replacing all occurrences of

some q ∈ C(N) in N by q̂. This means that we make the C(N̂) disjoint to
C(t(N)).
The restriction of places in P ′ to 0 is done by ΓtP ′ (N) := {m ∈ Γt(N) | ∀p ∈
P ′ m(p−) = m(p+) = 0}.
Example (continued):
We identify t7 = {p̂−2 7→ 1, p̂+

1 7→ 3} + Id{p̂1,p̂2,p̂3}, t8 = {p̂−1 7→ 2, p̂+
3 7→ 1} +

Id{p̂1,p̂2,p̂3} and t̂ = {p−3 7→ 7, p+
2 7→ 5} + Id{p2,p3}. This yields the expressions

T1 = t7 ∪ t8 and N1 = ∗{p̂1,p̂2,p̂3}(T1). On the next level, we get the generalized
transition t2 = tp1(N

′)(
∅+

{[
p−2
1

, p̂−2
1

]
,
[

p−3
1

, p̂−3
1

]
,
[

p+
2
1

, p̂+
2
1

]
,
[

p+
3
1

, p̂+
3
1

]}∗)
◦̂{p̂−2 ,p̂−3 ,p̂+

2 ,p̂+
3 }

N1,

which we visualize as '

&

$

%
p̂2��

��
t7 p̂1��

��

p̂3��
��

t8

?

6

- -
3 2

t2 =

T2 = t2 ∪ t̂ and N2 =∗{p2,p3}(T2). On the top level, we get

T3 = t3 =
[

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]
◦̂{p−2 ,p−3 ,p+

2 ,p+
3 }

N2,

which we visualize as follows:'

&

$

%
p2��

��

t2 p3��
��

t̂

������������1

2

J
J

J
JĴ

4

6

y

-
z

?

7

�

5

J
J

J
JĴ

3

������������1

4
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3.1 The property T
In order to decide the emptiness problem for expressions, we want to establish a
normal form T , which corresponds to the condition Θ in [Kos84]:

Definition An expression T has the property T if ∀t ∈ T, ∀Ni =∗PTi
(Ti) ∈ Kt

the following conditions hold:

1. In recursive manner, Ti has

(a) the property T , and

(b) For all t′ ∈ Ti it holds ∀g ∈ {ct′} ∪ Γt′ ∃wg ∈ C(t′) g(wg) = 1,
∀g′ ∈

⋃
t′∈Ti

{ct′} ∪ Γt′ \ {g} g′(wg) = 0.

This condition says that the number of times where g is used is exactly
the number of occurrence of the witness (place) wg.

2. ∀g ∈ {ct} ∪ Γt,∀p ∈ PTi
g(p−)− ind(g)(p−) = g(p+)− ind(g)(p+), where

ind(g) :=
∑

t′∈Ti,g′∈{ct′}∪Γt′

g(wg′)g
′

describes the indirect effect of g using the property about the witness places
in Condition 1 in the recursion for Ti. This property says that g(wg′)
is exactly the number of times that g′ is used. Thus, ind(g) contains a
quantitative information about the firing sequences which are allowed by g.
The condition says that (disregarding the real control by the sub-net Ni)
the quantitative information is consistent with the expected control.

3. ∀w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
) Σ

g∈Γt

g(w) > 0. This condition says that each

witness appears in a period and, thus, the use of each interior transition
and period is unlimited.

4. There are multisets ∃m+,m− ∈ R(Ni) with ∀p ∈ PTi

m+ |P−
Ti

∈ (ct + Γ∗
t ) |P−

Ti

∧((∀g ∈ Γt g(p−) = 0) → m+(p+) > m+(p−))∧

m− |P+
Ti

∈ (ct + Γ∗
t ) |P+

Ti

∧((∀g ∈ Γt g(p+) = 0) → m−(p−) > m−(p+)).

This condition says that there is a firing sequence in the sub-net Ni quanti-
tatively described by m+. This firing sequence starts with a marking avail-
able by ct + Γ∗

t and increases all those places which cannot be increased by
Γt.

5. ct |C(t)∈ R(t). This condition says that transition t can fire without the use
of one of its periods in Γt.
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Expression Carrier set

T C(T ) =
⋃

T .1.b

?

6

t ∈ T {ct} ∪ Γt ⊆ N
PPPPPi


C(t) = P−

T ∪ P+
T ∪ {wct , wg, ...}

At =
⋃
i

C(Ni) =
⋃
i

C(Ti) =
⋃
i

⋃
6Ni ∈ Kt Ti T .1.b

?

PPPPPi
 C(t′) = P−

Ti
∪ P+

Ti
∪ {wct′

, w′
g, ...}

At′ ...

t′ ∈ Ti {ct′} ∪ Γt′ ⊆ N

Figure 2: An overview over the expressions and their carrier sets.

In Section 4, we describe a decision algorithm which reduces expressions not
having the property T in every step. This leads to the following theorem:

Theorem 3.1 For every expression T , we can effectively construct a T ′ with
R(T ) = R(T ′) such that T ′ has property T .

Corollary 3.1 The reachability problem for a Petri net with one inhibitor arc is
decidable.

Proof: According to Lemmata 2.3 and 3.1, we can construct an expression T
where R(T ) = {∅} (and is not empty) if and only if there is a firing sequence w ∈
T ∗ with m0[w〉me. Then, we construct T ′ according to Theorem 3.1. According
to Condition 5 of property T , R(T ) = R(T ′) is empty if and only if T ′ = ∅.

Remark: Alternatively, instead of using Lemma 2.3, we can construct T for a
given net N = (P, T,W, {(p1, t̂)},m0,me) directly by connecting three sub-nets
with a linear set in such a way that the first sub-net expresses firing sequences in
(T \{t̂})∗ starting with m0 before the first firing of t̂, the second contains only one
transition which has a sub-net itself expressing firing sequences ∈ (t̂(T \ {t̂})∗)∗
ending with markings without tokens on p1 and the third sub-net expresses firing
sequences in (T \ {t̂})∗ ending with me.

3.2 The size of an expression

To prove the termination of the algorithm in Section 4, we have to define an
ordering on a size S which is Noetherian and decreasing in every step of the
algorithm:
A list (tuple, respectively) is smaller than another if the first i elements are equal
and the i + 1’th element is smaller (or not existing). A multiset m is smaller
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than a multiset m′ if there is an e with m(e) < m′(e) and m(e′) = m′(e′) for all
e′ > e. (Thus multisets may as well be interpreted as a descending ordered list
using lexicographic order.)
The smallest size is S(∅). Accordingly, if T = ∅ then T trivially has the property
T .
The size S(T ) =

∑
t∈T

{S(t) 7→ 1} is a multiset of all sizes S(t) with t ∈ T . The

size of t is S(t) := (S(Kt), b2, b5 + |Γt|). Here, bi = 0 if Condition T .i is fulfilled,
and bi = 1 otherwise. The size S(Kt) =

∑
Ni∈Kt

{S(Ni) 7→ 1} of a set of nets is a

multiset of the sizes S(Ni) of the nets Ni ∈ Kt. The size of a net is

S(Ni) := (sm + {|PTi
| 7→ 1}, S(Ti), b1b, |C(Ni)|)

with sm := max{s | ∃g, f, b2, b
′
1b, e, s

′ s′((s,g, b′1b, f)) > 0, S(Ti)((s
′, b2, e)) > 0}.

In other words, the first component is a multiset in NN which is obtained by taking
the maximal of such multisets of all first components in the size of a subnet of
one of the transitions in Ti (respectively ∅ if none exists) and adding the current
number of places. The second component contains the recursion. The reason
for this complicated construction comes from Section 4.4 where the recursion-
depth increases but the size has to decrease. Furthermore, this causes S(Ni) to
be greater than the size of its occurring subnets. This is also necessary in parts
where the algorithm works recursively since it follows that S(Kt′) < S(Kt) for
all t′ contained one or more levels deeper in Kt.
Example (continued):
S(t7) = S(t8) = (∅, 0, 3), S(T1) = {(∅, 0, 3) 7→ 2},
S(N1) = ({3 7→ 1}, {(∅, 0, 3) 7→ 2}, 1, 6), S(t2) = ({S(N1) 7→ 1}, 1, 4),
S(T2) = {S(t′2) 7→ 1, (∅, 0, 2) 7→ 1}, S(N2) = ({3 7→ 1, 2 7→ 1}, S(T2), 1, 4).

Lemma 3.2 The ordering on S defined above is Noetherian

Proof: As shown in [DM79], the set of descending ordered lists of elements of a
Noetherian ordered set is again Noetherian. The first components of the quadru-
ples S(N) are descending lists of natural numbers and, thus, Noetherian.
Assume by contradiction that x is the smallest first component such that there
is an infinite descending sequence of quadruples

S(N) = (x,y1, b
′
1, n1), (x,y2, b

′
2, n2), ....

In all quadruples appearing in all lists in all triples appearing in any yi, the
first component must always be smaller than x and, therefore, their order must
be Noetherian. Thus, the lists which are the first components of the triples are
also ordered Noetherian. Since the other components are natural numbers, the
triples and the yi’s are also ordered Noetherian. Since the first component x
must remain constant, and the third and forth components are natural numbers,
we get a contradiction; thus, S(T ) is Noetherian.
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3.3 Additional operators working on expressions

The following lemma is used to restrict the semilinear part in a transition t as it
will be needed to establish the property T .2

Lemma 3.3 Let t = Lt◦̂AtKt be an expressions for a transition and L be (an
expression for) a semi linear set. Then, we can construct an expression T ′ = t|L
(with R(T ′) = (R(Lt) ∩ R(L))◦̂AtR(Kt)) where the occurring sizes S(t′) with
t′ ∈ T ′ can increase relatively to S(t) only in the last position in the triple.

Proof: Using Presburger arithmetic [GS65],[ES69], we can calculate for every
t ∈ T the semi-linear set

Lt ∩ L =:
l⋃

j=1

Lj

resulting in finitely many linear sets Lj, and define T ′ := t|L := {Lj◦̂AtKt | j ≤ l}.

An Example is given in Subsection 4.2 where Lt ∩ L consists of only one linear
set and thus T ′ consists of only one transition.
The following Lemma 3.4 and Lemma 3.1 allow us to bring every expression into
the normal form as nested Petri nets:

Lemma 3.4 Let T and T ′ be expressions for sets of transitions, and Q be a
relation. Then, we can construct an expression T ′′ := T◦QT ′ (with R(T ′′) =
R(T )◦QR(T ′)) where the occurring sizes S(t) can increase only in the last posi-
tion in the triple and sum up in the first position.

Proof: We may assume that
⋃
t∈T

At,
⋃

t∈T ′
At and π1(Q)∪π2(Q) are pairwise disjoint

(otherwise replace elements by copies). We define

T ′′ :=

{
Lj◦̂At∪At′

(Kt + Kt′)

∣∣∣∣ t ∈ T, t′ ∈ T ′, j ≤ r , Lt◦QLt′ =:
r⋃

j=1

Lj

}
using Presburger arithmetics (since Lt◦QLt′ is semilinear see Subsection 1.1.3).
It holds R(T )◦QR(T ′) =

⋃
t∈T,t′∈T ′

R(t)◦QR(t′) =

⋃
t∈T,t′∈T ′

((Lt◦̂At(R(N1) + ...))◦Q(Lt′◦̂At′
(R(N ′

1) + ...))) =⋃
t∈T,t′∈T ′

((R(N1) + ...)◦̂A−1
t

Lt◦QLt′◦̂At′
(R(N ′

1) + ...)) =⋃
t∈T,t′∈T ′

(Lt◦QLt′)◦̂At∪At′
(R(N1) + ... + R(N ′

1) + ...) = R(T ′′)

since At, At′ and π1(Q) ∪ π2(Q) are pairwise disjoint. (see Subsection 1.1.2.)
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Examples are given in Subsections 4.3 and 4.4.
From this we can conclude some decidability result for the first order formulas
with PLUS and the monotone transitive closure mTC defined as follows:
Given a formula φ(x1, ..., xk, x

′
1, ..., x

′
k), then mTC(φ) denotes the smallest set

S ⊂ N2k containing all of the following:

• (x1, ..., xk, x1, ..., xk) for (x1, ..., xk) ∈ Nk (this stands for the identity),

• (x1, ..., xk, x
′
1, ..., x

′
k) for φ(x1, ..., xk, x

′
1, ..., x

′
k),

• (x1, ..., xk, x
′′
1, ..., x

′′
k) for (x1, ..., xk, x

′
1, ..., x

′
k), (x

′
1, ..., x

′
k, x

′′
1, ..., x

′′
k) ∈ S, and

• (x1 + x′′1, ..., xk + x′′k, x
′
1 + x′′1, ..., x

′
k + x′′k) for a (x1, ..., xk, x

′
1, ..., x

′
k) ∈ S and

(x′′1, ..., x
′′
k) ∈ Nk.

Corollary 3.2 The emptiness and satisfiability is decidable for formulas with an
FO+PLUS-formula inside and ∧,∨,∃ and mTC operators outside.

Proof: We can express linear sets by a t and, thus, semilinear sets by a T . Now,
observe that the operators work on expressions of the form T as follows: We can
express ∧ corresponding to ∩ with ◦Q (see Section 1.1.2) and apply Lemma 3.4.
For ∨ this follows simply from T being already a union. The existential quantifier
is done by removing the element (thus, releasing the control from the outside) and
the operator mTC is done by using Lemma 3.1. Then we construct T ′ according
to Theorem 3.1. According to Condition 5 of property T , R(T ) = R(T ′) is empty
if and only if T ′ = ∅.

4 The main algorithm establishing property T
The idea of the algorithm is to reduce T if one of the conditions is not fulfilled. For
Condition 2, Presburger arithmetics is used to transfer the implicit quantitative
restriction by the witness places to the explicit restriction of the transitions.
Condition 3 ensures that all quantitative controls are unlimited. Condition 4
ensures that all places are unlimited. A covering graph construction deciding
Condition 4 uses the algorithm recursively (like for Condition 1) for every step.
Here, the current marking of a node is being included as a restriction to the
semilinear set. Limited places are deleted at the cost of a larger structure. This
larger structure, however, contains parts which are generated by restricting parts.
This restriction might cause them to loose the property T reached by a previous
recursive step. However, as we will see because of their smaller size, the property
T can be established again and the whole algorithm will still terminate.
Proof:(of Theorem 3.1)
The expression T ′ in the Theorem is computed by the following algorithm where
the details are explained in the subsections:
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function reacheq(T ):
begin

repeat
i:= 1
while i≤5 and ∀t ∈ T, ∀N ∈ Kt Condition T .i fulfilled

do i:=i+1 od
if i=6 then return T

else T :=T ′ for T ′ according to subsection 4.i fi
until i=6

end reacheq

in each step S(T ) decreases (S(reacheq(T )) < S(T ) if T 6= reacheq(T )); due to
Lemma 3.2 the algorithm terminates.
The following table shows how the size S(t) can change during the steps of Chap-
ter 4:

S(t)
S(Ni)

S(t′) for t′ ∈ Ti

sm + {|PTi
| 7→ 1} S(Kt′) b2 b5 + |Γt′| b1b |C(Ni)| b2 b5 + |Γt|

4.1 - - - - ↓ ↑ ↑ -
4.2 - - - - - - ↓ ↑
4.3 - - - - - ↓ ↑ ↑
4.4 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
4.5 - - - - - - - ↓

4.1 Condition 1 Recursion and introducing witnesses

Let Condition 1 be not fulfilled by Ti; let T ′
i := reacheq(Ti), which terminates by

induction since S(Ti) < S(T ).
For all tj ∈ T ′

i let Gj be the set of all g ∈ {ctj} ∪ Γtj not having a witness. Add
witnesses{wg′ | g ∈ Gj} to C(t′j) := C(tj) ∪ {wg′ | g ∈ Gj} by replacing each g
in Gj by g′ := g + {wg′ 7→ 1} in

T ′′
i :=

{
t′j

∣∣∣∣ tj ∈ T ′
i , At′j

= Atj , Kt′j
= Ktj ,

Γt′j
= Γtj \Gj ∪ {g′ | g ∈ Gj \ {ct} and ct′j

:= ctj if ctj /∈ Gj

}
.

Now, we set t′ := Lt′◦̂At′
Kt′ with Kt′ = Kt \ {Ni} ∪ {N ′′

i }, N ′′
i = ∗PT ′′

i

(T ′′
i ),

At′ = At ∪ C(N ′′
i ) and Γt′ := Γt ∪ {{w 7→ 1} | w ∈ C(N ′′

i ) \ C(Ni)}, and let
T ′ := T \ {t} ∪ {t′}. Since R(Ti) = R(T ′′

i ) |C(Ti), we have R(Ni) = R(N ′′
i ) |C(Ti);

thus, R(t) = R(t′); thus, R(T ) = R(T ′).
Since S(tj) = S(t′j) for all tj ∈ T ′

i , the size S(T ′′
i ) = S(T ′

i ) remains unchanged.
The only increase was |C(N ′′

i )| ≥ |C(Ni)| but but we have either S(T ′′
i ) = S(T ′

i ) <
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S(Ti), or in case T ′
i = Ti, we have now b1b = 0. From that follows that S(N ′′

i ) <
S(Ni); thus, S(t′) < S(t) and S(T ′) < S(T ).
Example (continued):
Since the expression T1 does not fulfill Condition 1, we add the two witnesses
wct′7

and wct′8
. For simplicity, we omit the witnesses for the periods for IdP in

the elementary transitions. So we replace t7 and t8 by t′7 = {p̂−2 7→ 1, p̂+
1 7→

3, wct′7
7→ 1} + Idp̂1,p̂2,p̂3 and t′8 = {p̂−1 7→ 2, p̂+

3 7→ 1, wct′8
7→ 1} + Idp̂1,p̂2,p̂3 .

This yields the expressions T ′′
1 = t′7 ∪ t′8 and N ′′

1 = ∗{p̂1,p̂2,p̂3}(T
′′
1 ). On the

next level, we get t′2 = (∅ + {{p−2 7→ 1, p̂−2 7→ 1}, {p−3 7→ 1, p̂−3 7→ 1}, {p+
2 7→

1, p̂+
2 7→ 1}, {p+

3 7→ 1, p̂+
3 7→ 1}, {wct′7

7→ 1}, {wct′8
7→ 1}}∗), ◦̂{p̂−2 ,p̂−3 ,p̂+

2 ,p̂+
3 }

N ′′
1 for

the generalized transition and T ′
2 = t′2 ∪ t̂.

The new sizes are now S(t′7) = S(t′8) = (∅, 0, 3) = S(t7),
S(T ′′

1 ) = {(∅, 0, 3) 7→ 2} = S(T1),
S(N ′′

1 ) = ({3 7→ 1}, {(∅, 0, 3) 7→ 2}, 0, 8) < S(N1),
S(t′2) = ({S(N ′′

1 ) 7→ 1}, 1, 6) < S(t2),
S(T ′

2) = {S(t′2) 7→ 1, (∅, 0, 2) 7→ 1} < S(T2).

4.2 Condition 2 Quantitative consistency

Let Condition 2 be not fulfilled by Ti. The set L :={
g ∈ NCL

∣∣ ∀p ∈ ⋃Ni∈Kt
PTi

g(p−)− ind(g)(p−) = g(p+)− ind(g)(p+)
}

on the carrier set CL = C(t)∪
⋃

Ni∈Kt

C(Ni) is a Presburger set. Since R(t) ⊆ L|C(t)

follows from the definition of R(t) and the function ind, we can set T ′ := T \
{t} ∪ t|L using Lemma 3.3. In other words, we have cut something away which
could not have been in R(T ) anyway.
Since b2 is now 0 for each tj ∈ t|L and S(Ktj) remains the same as S(Kt),
according to Lemma 3.3, it holds S(T ′) < S(T ).

Example (continued):
We see that t′2 does not fulfill Condition 2 when we look at the resulting equation

g(p̂−)−g(wct′7
)ct′7

(p̂−)−g(wct′8
)ct′8

(p̂−) = g(p̂+)−g(wct′7
)ct′7

(p̂+)−g(wct′8
)ct′8

(p̂+)

for all p ∈ P characterizing L. This is equivalent to the following three equations:
2g(wct′8

) = 3g(wct′7
), g(p̂−2 ) − g(wct′7

) = g(p̂+
2 ), g(p̂−3 ) = g(p̂+

3 ) − g(wct′8
). Their

solutions are described by the linear set Lt′′2
= Lt′2

∩ L =

∅+

{[
p−2
1

,
p̂−2
1

,
p+

2

1
,
p̂+

2

1

]
,

[
p−3
1

,
p̂−3
1

,
p+

3

1
,
p̂+

3

1

]
,

[
wct′7

2
,
wct′8

3
,
p−2
2

,
p̂−2
2

,
p−3
3

,
p̂−3
3

]}∗

and yield t′′2 = t′2|L = Lt′′2
◦̂{p̂−2 ,p̂+

2 ,p̂−3 ,p̂+
3 }

N ′′
1 with S(t′′2) = ({S(N ′′

1 ) 7→ 1}, 0, 3) <

S(t′2). Since T ′′
2 = t′′2 ∪ t̂ fulfills the remaining properties, we can continue one

level higher.
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Adding the witnesses leads to Lt′′′2
=

∅+
{[

p−2
1

, p̂−2
1

, p+
2
1

, p̂+
2
1

, w1

1

]
,
[

p−3
1

, p̂−3
1

, p+
3
1

, p̂+
3
1

, w2

1

]
,
[

wc
t′7

2
,

wc
t′8

3
, p−2

2
, p̂−2

2
, p−3

3
, p̂−3

3
, w3

1

]}∗
(we omit the witness for ∅.) with S(t′′′2 ) = S(t′′2) = ({S(N ′′

1 ) 7→ 1}, 0, 3).

Defining T ′′′
2 = t′′′2 ∪ t̂′ with S(T ′′′

2 ) = S(T ′′
2 ) and N ′′′

2 = ∗{p̂1,p̂2,p̂3}(T
′′′
2 ) with

S(N ′′′
2 ) = ({3 7→ 1, 2 7→ 1}, S(T ′′′

2 ), 0, 8) < S(N ′′
2 ) = ({3 7→ 1, 2 7→ 1}, S(T ′′′

2 ), 1, 4)
we get

t′3 =
([

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]
+
{[

w1

1

]
,
[

w2

1

]
,
[

w3

1

]
,
[wc

t̂′
1

]}∗)◦{p−2 ,p+
2 ,p−3 ,p+

3 }
N ′′′

2 .

Establishing Condition 2 leads to

t′′3 =
([

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

, w3

5
, wc

t̂′
2

]
+
{[

w1

1

]
,
[

w2

1

]}∗)◦{p−2 ,p+
2 ,p−3 ,p+

3 }
N ′′′

2 .

4.3 Condition 3 Elimination of witnesses

Let Condition 3 be not fulfilled by witness w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
). This means

that we can replace Ni by some expression T̂ with R(T̂ ) = R(Ni)◦̂{w}ct|w since
for all m ∈ Lt, we have m(w) = ct(w). Then, we can set

T ′ := T \ {t} ∪ (Lt |{w} ◦̂At\C(Ni)(Kt \ {Ni}))◦̂C(Ni)\{w}T̂

which repaces the transition t = Lt◦AtKt by all those sets of transitions which
result from using Lemma 3.4 (because T̂ is not a net). This means that Ni is
removed and the equivalent T̂ is plugged in at the same range; thus, R(t) =
R(Lt) |{w} ◦̂At\{w}(R(Kt \ {Ni}) + R(T̂ )).

To create T̂ =
⋃
γ

Tγ, we consider every possible combination γ (including the order

of the summands) of ct(w) =
lγ∑

m=1

gm(w) with gm ∈ ctm + {g ∈ Γtm | g(w) > 0}∗,

gm(w) > 0 and tm ∈ Ti and build t′m with Lt′m = gm |{w} +{g ∈ Γtm | g(w) = 0}∗
and Kt′m := Ktm . The expressions t′m describe the parts in which w was used. In

N ′
i =∗PT ′

i

(T ′
i ) with T ′

i :=

{t′′′ | t′′ ∈ Ti, ct′′ = ct′′′ , Kt′′′ = Kt′′ , ct′′(w) = 0, Γt′′′ = {g ∈ Γt′′ | g(w) = 0}},

we filter out everything which affects w; thus, C(N ′
i) = C(T ′

i ) = C(Ti) \ {w}
and R(N ′

i) = {m ∈ R(Ni) | m(w) = 0}. Then, using Lemma 3.1, we construct
t(N ′

i) which has now the property R(t(N ′
i)) = {m ∈ R(Ni)|m(w) = 0}. Now,

we define

Tγ := t(N ′
i)◦PT ′

i

t′1◦PT ′
i

t(N ′
i)◦PT ′

i

t′2◦Pti
...◦PT ′

i

t′lγ◦PT ′
i

t(N ′
i)

again using Lemma 3.4.
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It holds S(Kt′) < S(Kt) for every new t′ in T ′ because of S(N ′
i) < S(Ni). This

in turn follows from |C(T ′
i )| = |C(Ti)| − 1 and S(N) < S(Ni) for all N ∈ Ktm ,

and m ≤ lγ for all γ.
It holds S(T ′) < S(T ) since S(t′) < S(t) for every t′.

Example: Consider t with ct =
[

w
2
, p−

4
, p+

5

]
, ∀g ∈ Γt g(w) = 0, Kt = {∗{p}(v ∪

tj)}, and ctj =
[

w
1
, p−

6
, p+

7
, q−

8
, q+

9

]
, Ktj = {∗{q}(u)}.

'
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Then t′ is defined such that ct′ =
[

p−0
4

, p+
0
6

, q−1
8

, q+
1
9

, p−1
7

, p+
1
6

, q−2
8

, q+
2
9

, p−2
7

, p+
2
5

]
, further-

more,
[

p−1
1

, p+
0
1

]
,
[

p−2
1

, p+
1
1

]
∈ Γt′ and

Kt = {∗{p0}(v0),∗{q1}(u1),∗{p1}(v1),∗{q2}(u2),∗{p2}(v2)}, where pi, qi, vi and
ui are replacements caused by disjointness condition in Lemma 3.4.'
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4 56+x 6+y8 89 97+x 7+y

The variables x and y illustrate the effect of the periods in Γt′ which originate
from the (omitted) periods of tj.

4.4 Condition 4 Elimination of bounded places

Condition 4 is decidable by two covering graph constructions for every i working
as follows: Every node in the covering graph CG(i,+) (CG(i,−), respectively ) has a

marking from (N∪{ω})P−
Ti ((N∪{ω})P+

Ti , respectively ). The root of the covering
graph CG(i,+) has the marking ct |P−

Ti

+ω{p−|∃g∈Γg(p−)>0}.
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For a node in CG(i,+) marked with m, we construct T ′
i with R(T ′

i ) = {g ∈ R(Ti) |
g |P−

Ti

≤ m} using Lemma 3.3 as T ′
i := {t′|{g∈Lt′ | g|

P−
Ti

≤m} | t′ ∈ Ti}. This restricts

the allowed multisets to those which are possible starting with the limited marking
m. All Kt′ with t′ ∈ T ′

i appear in the subnet Ni in t (unchanged by Lemma 3.3).
For all N ′ ∈ Kt′ , we have S(N ′) < S(Ni) since the first component in S(Ni) is
{|PTi

| 7→ 1} plus the maximum of everything one level deeper. Therefore, we
have S(Kt′) < S(Kt) for all t′ ∈ T ′

i and, thus, S(T ′
i ) < S(T ). This allows us to

compute T ′′
i := reacheq(T ′

i ) recursively.
For every t′′ ∈ T ′′

i , (since we know from Condition T .5 that ct′′ alone can fire),
we add a new node

m′ := m− ct′′ |P−
Ti

+{p− 7→ (ct′′(p
+) + ω Σ

g∈Γt′′
g(p+)) | p ∈ PTi

}

to the covering graph CG(i,+). According to Corollary 4.1, there is no limit for
the number of appearances of the multi-sets in Γt′′ in firing sequences. This allows
us to label those places p− with ω where g(p+) > 0 for a g ∈ Γt′′ .
If m′ > m′′ for an m′′ on the path from the root to m, then we set m′ :=
m′+ω(m′−m′′). This is because we can lift the marking of those places p− with
(m′ − m′′)(p−) > 0 by repeating the firing sequence corresponding to the path
from m′′ to m′ arbitrarily many times.
If m′ ≤ m′′ ∈ Path(m′), then we need not calculate the successors of m′ since
we already had better chances at m′′.
According to [Dic13], there are only finite sets of incomparable multi-sets over a
finite set P−

Ti
. It, therefore, follows that every path must terminate.

If for all i a node marked with ωP−
Ti is in CG(i,+) and, analogously, a node marked

with ωP+
Ti is in CG(i,−), then the Condition 4 is fulfilled. Otherwise, we can

calculate without loss of generality

k := min
σ∈{+,−}

max
path⊆CG(i,σ)

min
p∈PTi

max
m∈path

m(pσ)

This means that in every path in CG(i,+) or CG(i,−), there is a place p such that
on this path there are never more than k tokens on p− or p+ respectively.
Now, we can replace in T ′ := T \ {t}∪

⋃
p∈PTi

U(p) the transition t by all those sets

of transitions U(p), described in the following sub section, which are generated
by restricting t in such a way that, in the subnet Ni, there can never be more
than k tokens on p.
In order to show that S(T ′) < S(T ) we have to show that each S(t′) < S(t) for
every t′ in every U(p).

4.4.1 Elimination of places

As in the construction of a regular expression from a finite automaton having the
states 0, ...k, we define for all l, j, h ≤ k an expression T l−1

j,h describing correspond-

23



ing firing sequences with the following property: They start with a marking m0

with m0(p) = j, end with a marking m1 with m1(p) = h, and meanwhile the num-
ber tokens on p is always less than l. This allows us to remove the place p since its
information is no longer necessary. Therefore, we have PT l−1

j,h
= P ′

Ti
:= PTi

\ {p}).
For an inductive definition, we start with the case of an immediate success where
there is no ’meanwhile’: This means

T−1
j,h := Ti◦̂{p−,p+}{{p− 7→ j, p+ 7→ h}}

is constructed using Lemma 3.4. (We can write {{p− 7→ j, p+ 7→ h}} as {tj,h}
with ctj,h

= {p− 7→ j, p+ 7→ h} and Γtj,h
= Ktj,h

= ∅.) Recursively, we define

T l
l,l := {t(N l−1

l,l )} := {t(∗P ′
Ti

(T l−1
l,l ))}

using Lemma 3.1. Then with Lemma 3.4, we construct

T l
l,h := T l

l,l◦P ′
Ti

T l−1
l,h for h 6= l,

T l
j,l := T l−1

j,l ◦P ′
Ti

T l
l,l for j 6= l, and

T l
j,h := T l−1

j,l ◦P ′
Ti

T l
l,l◦P ′

Ti
T l−1

l,h ∪ T l−1
j,h for h 6= l ∧ j 6= l.

Now we define

U(p) = (Lt |{p−,p+} ◦̂At\C(Ni)(Kt \ {Ni}))◦̂C(Ni)\{p−,p+}T
k
ct(p−),ct(p+)

using Lemma 3.4. We have S(N ′) < S(Ni) for every N ′ ∈ Kt′ with t′ ∈
T k

ct(p−),ct(p+) because for the corresponding first components s′ and si of the 4-

tuples, we have s′(|P ′
Ti
|) = si(|P ′

Ti
|) + k + 1 but s′(|PTi

|) = si(|PTi
|)− 1 (It holds

|P ′
Ti
| = |PTi

| − 1). Thus, S(t′′) < S(t) for every t′′ ∈ U(p).

Example: Let t = (c + Γ∗)◦̂C(Ni)∗{p}∪P (Ni) with c(p−) = 1, Ni = v ∪ w ∪ tj,

C(Ni) = {p−, p+} ∪ P− ∪ P+ and tj = (cj + Γ∗
j)◦̂{q−,q+}∪Q−∪Q+∗{q}∪Q(u) with

cj(p
+) = 1, cj(q

−) = 8 and cj(q
+) = 9 look like'
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and k = 1. Furthermore, we assume no other occurrence of p in any other
constant or period. This means that the firing sequences are restricted to the
regular expression ((wv∗tj)+v)∗wv∗. This corresponds to T−1

0,0 and T−1
1,1 to consist

only of a copy of v, T−1
1,0 only of a copy of w and T−1

0,1 only of a copy of tj.

We get T 0
0,0 = t(∗P (T−1

0,0 )), T 0
1,1 = T−1

1,0◦P T 0
0,0◦P T−1

0,1 ∪ T−1
1,1 ; in the end every

new transition t′ in (c + Γ∗) |{p−,p+} ◦̂C(Ni)\{p−,p+}T
1
1,0 with T 1

1,0 = T 1
1,1◦P T 0

1,0 =

t(∗P (T 0
1,1))◦P T−1

1,0◦P T 0
0,0 now looks like'

&
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In Section 5, we will show that we can build up firing sequences which compensate
the ’odd’ firing sequences from condition 4, from the constant, and from the ’odd’
indirect firing sequences in order to find a ct fulfilling condition 5:

Lemma 4.1 If the conditions 1 - 4 hold for t, then it holds

∀f ∈
∑
g∈Γt

g+Γ∗
t∀e ∈ (Γt∪−Γt)

∗∃k ≥ 2
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t)

The proof is in the following section. From this immediately follows:

Corollary 4.1 If the conditions 1 - 4 hold for t, then it holds

∀f ∈
∑
g∈Γt

g + Γ∗
t∃k ≥ 2 (ct + kf) |C(t)∈ R(t)

4.5 Condition 5 Making the constant firing

If Condition 5 is not fulfilled for t then, according to Corollary 4.1, for f =
∑
g∈Γ

g,

there exists a (smallest) k such that (c + kf) |C(t)∈ R(t). So we decompose Lt

such that R(Lt) = R(Lt + kf) ∪
⋃
g∈Γ

⋃
j≤k

R(ct + jg + (Γt \ {g})∗). Set

T ′ := T \ {t} ∪ {t′ | Kt′ = Kt, Γ
′
t = Γt ∧ ct′ = ct + kf)}

∪ {t′ | ∃j ≤ k,g ∈ Γ Γ′
t = Γt \ {g}) ∧ ct′ = ct + jg)}.
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Since Conditions 1 and 2 are not affected, b2 and S(Kt) do not change. The size
S(t′) is smaller than S(t) since b5 is now zero respectively |Γ \ {g}| < |Γ|; thus,
it holds S(T ′) < S(T ).

5 Building up compensating firing sequences

Proof:(of Lemma 4.1) Given f ∈
∑

g∈Γt

g + Γ∗
t and e ∈ (Γt ∪−Γt)

∗, we have to find

a k ≥ 2 such that
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t).

For an elementary transition t with Kt = ∅, we have R(t) = ct+Γ∗
t and the state-

ment is easily fulfilled by choosing a sufficiently large k compensating negative
components in e.

Induction step: For every Ni ∈ Kt, we consider m+,m− ∈ R(Ni) according to
Condition T .4 and define d := −m+ − m−. For every Ni ∈ Kt and for every
tj ∈ Ti, let

fj :=
∑
g∈Γtj

f(wg)g, ej :=
∑
g∈Γtj

e(wg)g, hj :=
∑
g∈Γtj

ct(wg)g, dj :=
∑
g∈Γtj

d(wg)g.

Since, according to Condition T .3, f(wg) > 0 for every g ∈ Γtj , we have fj ∈∑
g∈Γtj

g + Γ∗
tj
. This means fj fulfills the condition for f one level deeper.

By Condition T .1 and by applying the lemma by induction, for sub-transitions
tj of t three times for e as ej,hj or dj and for f as fj, there exist kj, k

′
j, k

′′
j ≥ 2

with

(ctj + kjfj) |C(tj), (ctj + kjfj + ej) |C(tj),
(ctj + k′jfj) |C(tj), (ctj + k′jfj + hj) |C(tj),
(ctj + k′′j fj) |C(tj), (ctj + k′′j fj + dj) |C(tj)∈ R(tj).

(1)

From Condition T .4, it follows that there exists a sufficiently large h ≥ 1 with
hf + e ∈

∑
g∈Γt

g + Γ∗
t , such that for all i and j

∀p ∈ PTi
∆+(p) := hf(p−)−m+(p−) + m+(p+) ≥ 1 ∧
∆−(p) := hf(p+) + m−(p−)−m−(p+) ≥ 1,

(2)

h = njkj = n′jk
′
j = n′′j k

′′
j for some nj, n

′
j, n

′′
j ,

lj := nj(kjf(wctj
)− 1) + e(wctj

) > 0,

n′j(k
′
jf(wctj

)− 1) + ct(wctj
) > 0 and

n′′j (k
′′
j f(wctj

)− 1) + d(wctj
) > 0

(3)
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Ti

•
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•
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•
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∆
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∆

•

m−

•

m−

• · · · •

m−

•
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β + lhf |P+
Ti
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l

︸ ︷︷ ︸
l

︸ ︷︷ ︸
l

Figure 3: The concatenation of 3l+1 paths in Ni.

since f(wctj
) > 0. Now, according to Condition T .5 and equation (1), we have

ind(hf) |C(tj) =
∑

g∈{ctj }∪Γtj

hf(wg)g |C(tj)

= njkj

(
f(wctj

)ctj +
∑

g∈Γtj

f(wg)g

)
|C(tj)

= nj

(
(kjf(wctj

)− 1)ctj + (ctj + kjfj)
)
|C(tj)∈ R(tj)

∗.

(4)

The same holds (because of equation (3)) for

ind(hf + e) |C(tj)=
∑

g∈{ctj }∪Γtj

(hf + e)(wg)g |C(tj) =(
nj((kjf(wctj

)− 1)ctj + (ctj + kjfj)) + e(wctj
)ctj + ej

)
|C(tj) =(

ljctj + (nj − 1)(ctj + kjfj) + (ctj + kjfj + ej)
)
|C(tj) ∈ R(tj)

∗.

(5)

Analogously, we have ind(hf + ct) |C(tj)∈ R(tj)
∗ and ind(hf + d) |C(tj)∈ R(tj)

∗,
and by combining all transitions in Ti (like those in equations (4) and (5) ), we
get

ind(2hf + ct) |C(Ti), ind(2hf + ct + e) |C(Ti), ∆ ∈ R(Ni).

for ∆ := ind(hf) |C(Ti) +d. (It holds ∀p ∈ PTi
∆+(p)−∆(p−) = ∆−(p)−∆(p+).)

Now, we will show that for every β ∈ ct+Γ∗
t with ind(β) |C(Ti)∈ R(Ni), there exists

a sufficiently large l ≥ 0 such that there are mµ ∈ R(Ni) for all 1 ≤ µ ≤ 3l + 1
fulfilling the following conditions:
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It holds for all 1 ≤ µ ≤ l and all p ∈ PTi

mµ(p−) = β(p−) + (l − µ + 1)hf(p−) + (µ− 1)∆+(p)
mµ(p+) = β(p−) + (l − µ)hf(p−) + µ∆+(p)

ml+1(p
−) = β(p−) + l∆+(p)

ml+1(p
+) = β(p+) + l∆+(p)

ml+1+µ(p−) = β(p+) + (l − µ + 1)∆+(p) + (µ− 1)∆−(p)
ml+1+µ(p+) = β(p+) + (l − µ)∆+(p) + µ∆−(p)
m2l+1+µ(p−) = β(p+) + (l − µ + 1)∆−(p) + (µ− 1)hf(p+)
m2l+1+µ(p+) = β(p+) + (l − µ)∆−(p) + µhf(p+).

Since, according to equation (2), ∆+(p) > 0 and hf(p−) ≥ 0, it holds mµ−m+ ∈
IdPTi

for a sufficiently large l. Together with m+ ∈ R(Ni), according to Condition
T .4, it follows that mµ ∈ m+ + IdPTi

⊆ R(Ni) for all 1 ≤ µ ≤ l and, analogously,
m2l+1+µ ∈ m− + IdPTi

⊆ R(Ni). According to Condition T .2, it holds ml+1 ∈
ind(β) |C(Ti) +IdPTi

⊆ R(Ni) and, analogously, ml+1+µ ∈ ∆ + IdPTi
⊆ R(Ni).

Since mµ(p+) = mµ+1(p
−) for all 1 ≤ µ ≤ 3l and all p ∈ PTi

, we can concatenate
all the mµ’s to one m ∈ R(Ni) with ind(β + lhf) |C(Ti)∈ m + IdPTi

⊆ R(Ni) and
m |P−

Ti
∪P+

Ti

= (β + lhf) |P−
Ti
∪P+

Ti

; thus,

(β + lhf) |C(t)∈ (ct + Γ∗
t )◦̂At

∑
Ni∈Kt

R(Ni) = R(t)

for At =
⋃

Ni∈Kt
C(Ni). For k := 2h + lh and β = 2hf + ct or β = 2hf + ct + e

we get (ct + kf) |C(t), (ct + kf + e) |C(t)∈ R(t).

Example:
Consider a transition t, where Kt

contains only the following sub-net:

p2��
��

t1

t3

p1��
��

p3��
��

t2

?

� �3

6

- -
2

?

9

6

7

This means ct1 =
[

p−2
1

, w1

1
, p+

1
1

]
, ct2 =

[
p−1
2

, w2

1
, p+

3
1

]
, ct3 =

[
p−1
9

, p−3
1

, w3

1
, p+

1
7

, p+
2
3

]
and

Kt1 = Kt2 = Kt3 = ∅. Let, furthermore, Γt = {g1,g2} with

g1 =
[

p−2
2

, w1

2
, w2

1
, p+

3
1

]
, g2 =

[
p−2
1

, w1

4
, w2

1
, w3

1

]
, ct =

[
p−3
1

, w1

2
, w3

1
, p+

2
1

]
.

Comparing ind(ct) =
[

p−1
9

, p−2
2

, p−3
1

, w1

2
, w3

1
, p+

1
9

, p+
2
3

]
with ct, we can see that Condi-

tion T .2 is fulfilled, but ct does not provide enough tokens on p1 to allow the
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firing of t3. We choose

f = g1 + g2 =
[

p−2
3

, w1

6
, w2

2
, w3

1
, p+

3
2

]
,

m+ =
[

p−2
3

, w1

3
, w2

1
, p+

1
1

, p+
3
1

]
,

m− =
[

p−1
1

, p−2
1

, w1

1
, w2

1
, p+

3
2

]
and h = 2 is large enough for ∆+ =

[
p1

1
, p2

3
, p3

1

]
and ∆− =

[
p1

1
, p2

1
, p3

1

]
. Looking

at

β = ct + 2hf =
[

p−2
6

, p−3
1

, w1

14
, w2

4
, w3

3
, p+

2
1

, p+
3
2

]
and

ind(β) =
[

p−1
35

, p−2
14

, p−3
3

, w1

14
, w2

4
, w3

3
, p+

1
35

, p+
2
9

, p+
3
4

]
we can see that l = 35 is sufficient. This also suffices for ∆ = ind(hf)−m+−m− =[

p−1
25

, p−2
8

, p−3
2

, w1

8
, w2

2
, w3

2
, p+

1
25

, p+
2
6

, p+
3
1

]
.

This means for k = 2h + lh = 74 we get (ct + 74(g1 + g2))|C(t) ∈ R(t).

6 The reachability relation for Petri nets with

inhibitor arcs

Now, we generalize Lemma 2.3 by using the operators ∪,◦Q and ∗Q over finite
sets of multisets in a nested way. This allows us to express the reachability
problem in a Petri net for which there exists an ordering of the places such that
a place has an inhibitor arc to all those transitions which have an inhibitor arc
from a preceding place:

Theorem 6.1 In a Petri-net (P, T, W, I,m0,me) with

∃g ∈ NP
+ ∀p, p′ ∈ P g(p) ≤ g(p′) → (∀t ∈ T (p′, t) ∈ I → (p, t) ∈ I),

we can construct an expression Tg such that there is a firing sequence w ∈ T ∗

with m0[w〉me if and only if R(Tg) is (= {∅} and) not empty.

With Theorem 3.1 we derive the following:

Corollary 6.1 The reachability problem for a Petri net (P, T,W, I,m0,me) with

∃g ∈ NP
+ ∀p, p′ ∈ P g(p) ≤ g(p′) → (∀t ∈ T (p′, t) ∈ I → (p, t) ∈ I),

is decidable.
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Proof: (of Theorem 6.1) Let the Petri-net again have the properties of lemmata
2.1 and 2.2. Let PTh

= {p | g(p) ≥ h} be the places accessible on level h; this
level can only represent markings having no token on a place p with g(p) < h.
The innermost expression T1 is given by

T1 := {t | t ∈ T, ∀p ∈ P (p, t) 6∈ I}

describing transitions having no inhibitor arc. In general, the expression Th on
level h > 1 is given by

Th := {th} ∪ {t | t ∈ T,∀p ∈ P g(p) ≥ h → (p, t) 6∈ I ∧
∀p ∈ P g(p) < h → W (p, t) = W (t, p) = 0 }

with th = tP\PTh
({∗PTh−1

(Th−1)}) in accordance with Lemma 3.1.

On the top level g = max{g(p) | p ∈ P}+ 1, we have

Tg := {tg} := {(m−
0 + m+

e )◦̂P+
Tg−1

∪P−
Tg−1

∗PTg−1
(Tg−1)}.

Now, we have to show that ∃w ∈ T ∗ m0[w〉me if and only if R(Tg) 6= ∅:
The firing sequence w can be decomposed in minimal firing sequences w1...wl

having the property m0[w1〉m1[w2〉...[wl〉mk = me such that mi(p) = 0 for all
i ≤ l and p with g(p) < g − 1.
In a general induction step for h < g−1, we are given a firing sequence m′

0[w
′〉m′

e.
It starts and ends with a marking without a token on a place p with g(p) ≤ h.
However, intermediately there is always a token on a place p with g(p) ≤ h in
the markings. This sequence w′ can be decomposed into minimal firing sequences
w1...wk having the property m′

0[w1〉m′
1[w2〉...[wk〉m′

k = m′
e such that m′

i(p) = 0
for all i ≤ k and p with g(p) < h. Thus, for all 1 < i < k, there is a p with
g(p) = h and m′

i(p) > 0.
If wi = ti ∈ T then W (p, ti) = W (ti, p) = 0 for all p with g(p) < h and (p, ti) 6∈ I
for all p with g(p) ≥ h. Thus, ti ∈ Th with Kti = ∅; therefore,

m′
i−1

− + m′
i
+ = {p− 7→ m′

i−1(p), p+ 7→ m′
i(p) | p ∈ P} ∈ R(Th).

(For h = 1, this is the only case, and this starts the induction.) Otherwise, by
minimality of wi, there is always a token on a place p with g(p) < h in the
intermediate markings. Thus, by induction over h, it holds

m′
i−1

−
+ m′

i
+ ∈ R(∗PTh−1

(Th−1)) = R(th) ⊆ R(Th)

as well. This means m′
0
− +m′

e
+ ∈ R(∗PTh

(Th)), which completes the induction.

On the top level, by concatenation of all m′
i−1

− +m′
i
+ ∈ R(∗PTg−1

(Tg−1)) for all
1 ≤ i ≤ g, we analogously, get

(m−
0 + m+

e ) ∈ R(∗PTg−1
(Tg−1)); thus, ∅ ∈ R(Tg).

The other direction again follows simply by composing firing sequences.
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Example: The start marking {p3 7→ 3, p4 7→ 2} and the end marking {p4 7→ 27}
of the Petri net

p3��
��

t6

p4��
�� t7

t9

p1��
��

p2��
��

t8

?

BBM 3

��
���

�����*

-
XXXXXXXXXy

5

���������9

� 2

-
2

XXXXXXXXXz
2

•���������

•
"

"
"

"
"

"
"

"
""

• BBN5

�

with the function g with g(p1) = 1, g(p2) = 2 and g(p3) = g(p4) = 3 leads to

T1 =

{[
p−4
3

,
p+

1

2
,
p+

3

1

]
,

[
p−1
1

,
p−3
1

,
p+

2

2
,
p+

4

1

]}
+ IdP .

This enables the firing sequence w = t6t7t7 from
[

p3

1
, p4

3

]
to
[

p2

4
, p4

2

]
on the inner-

most level as
[

p−3
1

, p−4
3

, p+
2
4

, p+
4
2

]
∈ R(∗PT1

(T1)) = R(t2) ⊆ R(T2). Together with[
p−2
5

, p+
3
2

]
∈ R(T2) for t8, we get the firing sequence w′ = (w)(w)t8(w)t8(w)t8(w)t8

from
[

p3

2
, p4

7

]
to
[

p3

5
, p4

2

]
on the next level as

[
p−3
2

, p−4
7

, p+
3
5

, p+
4
2

]
∈ R(∗PT2

(T2)) =

R(t3) ⊆ R(T3). Together with
[

p−3
1

, p+
4
5

]
∈ R(T3) for t9, this enables the firing se-

quence w′′ = t9(w
′)t59 from

[
p3

3
, p4

2

]
to
[

p4

27

]
on the following level as

[
p−3
3

, p−4
2

, p+
4

27

]
∈

R(∗PT3
(T3)) = R(t4) = R(T4).

'
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%
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�
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�
�
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@

@
@
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6
5
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7 Priority-Multicounter-Automata

We define a priority-multicounter-automaton by a restrictive zero-test according
to an order of the counters in the following way: the first counter can be tested
for zero at any time; the second counter can only be tested for zero simulta-
neously with the first counter; any further counter can only be tested for zero
simultaneously with all preceding counters. Formally, this reads as follows:
A priority-multicounter-automaton is a one-way automaton described by the 6-
tuple

A = (k, Z, Σ, δ, z0, E)

with the set of states Z, the input alphabet Σ, the transition relation

δ ⊆ (Z × (Σ ∪ {λ})× {0 . . . k})× (Z × {−1, 0, 1}k),

initial state z0, the accepting states E ⊆ Z, the set of configurations CA =
Z × Σ∗ × Nk, the initial configuration σA(x) = 〈z0, x, 0, ..., 0︸ ︷︷ ︸

k

〉 and configuration

transition relation

〈z, ax, n1, ..., nk〉 |A 〈z′, x, n1 + i1, ..., nk + ik〉

if and only if z, z′ ∈ Z, a ∈ Σ ∪ {λ}, 〈(z, a, j), (z′, i1, ...ik)〉 ∈ δ, ∀i ≤ j ni = 0.
The language recognized by an priority-multicounter-automaton A is L(A) =
{w | ∃ze ∈ E ∃n1, ..., nk ∈ N 〈z0, w, 0, ..., 0〉 | ∗

A
〈ze, λ, n1, ..., nk〉. A priority-

multicounter-automaton can be changed in such a way that it has only one ac-
cepting state ze and that all counters are empty while accepting. Thus, L(A) =
{w | 〈z0, w, 0, ..., 0〉 | ∗

A
〈ze, λ, 0, ..., 0〉}.

Using Theorem 6.1, we show that the emptiness problem of the accepted language
is decidable for priority-multicounter-automata. The same holds for the halting
problem by constructing an automaton which contains its input in the states.

Theorem 7.1 The emptiness problem for priority-multicounter-automata is de-
cidable.

Proof: Given A we construct a Petri net (P, T, W, I,m0, m1) with the places
P := {1...k} ∪ Z, the transitions T = δ, the weights W with
W (z, ((z′, a, j), (z′′, V ))) := 1 if z = z′ else := 0;
W (((z′, a, j), (z′′, V )), z) := 1 if z = z′′ else := 0;
W (i, ((z′, a, j), (z′′, V ))) := 1 if V (i) = −1 else := 0; and
W (((z′, a, j), (z′′, V )), i) := 1 if V (i) = 1 else := 0;
the inhibitor arcs I := {(i, ((z′, a, j), (z′′, V ))) | i ≤ j}, the start marking m0 :=
{z0 7→ 1}, and the end marking m1 := {ze 7→ 1} which is reachable from m0 if
and only if L(A) 6= ∅. According to Corollary 3.1 with g(i) = i for i ≤ k and
g(z) = k + 1 for z ∈ Z, this is decidable.
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Consequences of this result for the decidability of the synchronizability and max-
imality of semi-trace languages are formulated in [Rei94]. Further consequences
are described in [FFOR05]: Every unary language is recursive if it is gener-
ated by a graph-controlled grammar with an arbitrary number of nonterminal
symbols but only one of the nonterminal symbols being allowed to be used in
the appearance checking mode. Theorem 7.1 implies the optimality the results
in [FFOR05] proving the computational completeness of graph-controlled gram-
mars, programmed grammars, and matrix grammars with a certain nonterminal
complexity.
The classes k-PMC of languages accepted by a priority-multicounter-automaton
with k > 0 counters (and also their union) are incomparable to the class LIN of
linear languages and it holds (k-1)-PMC ( k-PMC. This is because

{an1ban2 ...bank+1$ank+1b...an2ban1 | ∀i ≤ k + 1 ni ∈ N} 6∈ k−PMC.

This can be shown by constructing T fulfilling property T and, then, by using
Lemma 4.1 to find two different words in the language where the automaton has
the same configuration reading $. With the same argument, this also holds for
the classes k-BLIND and k-PBLIND in [Gre78]. Furthermore, {(anb)m | n, m ∈
N} cannot be accepted by a priority-multicounter-automaton (Theorem 3.2 in
[Rei94]).

8 Restricted Priority- Multipushdown- Automa-

ta

We define a priority-multipushdown-automaton by a different treatment of one
of the two pushdown symbols according to an order of the pushdown stores in
the following way: let the pushdown alphabet be {0, 1}. A 0 can be pushed
to and popped from every pushdown store independently, but a 1 can only be
pushed to or popped from a pushdown store if all pushdown stores with a lower
order are empty. Furthermore, the restriction requires that if a 1 is popped from
a pushdown store, then a 1 cannot be pushed anymore to this store until it is
empty.

Theorem 8.1 The emptiness problem for restricted priority-multipushdown-au-
tomata is decidable.

This generalizes the result in [JKLP90] that LIN%D′
1
∗ (the class of languages

generated by linear grammar and deletion of semi Dyck words) is recursive. We
conjecture that decidability still holds in the unrestricted case but, even in the
special case of a pushdown automaton with additional weak counters (without
zero-test), this is still an open problem.

33



Acknowledgment: I thank Klaus-Jörn Lange and Andreas Krebs, for many
helpful discussions on this version and also Volker Diekert and Henning Fernau
for many helpful discussions on previous versions.

References

[Avr03] Arnon Avron. Transitive closure and the mechanization of mathe-
matics. In F. Kamareddine, editor, Thirty Five Years of Automating
Mathematics, pages 149–171. Kluwer Academic Publishers, 2003.

[CK86] L. A. Cherkasova and V. E. Kotov. Structured nets. In J. Gruska
and M. Chytil, editors, Proceedings of the 6th MFCS, number 118 in
LNCS, pages 242–251. Springer, 1986.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Amer. J. Math., 35:413–422,
1913.

[DM79] N. Dershowitz and Z. Manna. Proving Termination with Multiset
Orderings. Comm. ACM, 22(8):465–476, 1979.

[ES69] S. Eilenberg and M. P. Schützenberger. Rational sets in commutative
monoids. Journal of Algebra, 13:173–191, 1969.

[FFOR05] H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refining the
nonterminal complexity of graph-controlled grammars. In Proceedings
of the DCFS, pages 110–121, 2005.

[Gre78] S. Greibach. Remarks on blind and partially blind one-way multi-
counter machines. Theoret. Comput. Sci., 7:311–324, 1978.

[GS65] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and
languages. Pacific J. Math., 16:285–296, 1965.

[Imm87] N. Immerman. Languages that capture complexity classes. SIAM J.
of Computing, 16:4:760–778, 1987.

[JKLP90] M. Jantzen, M. Kudlek, K.-J. Lange, and H. Petersen. Dyck1-
reductions of context-free languages. In Computers and Artificial In-
telligence, volume 9, pages 228–236, 1990.
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Appendix

A Alternative proof of Corollary 3.1

Alternatively, instead of using Lemmata 2.3, 2.1 and 2.2, we can construct T
for a given net N = (P, T,W, {(p1, t̂)},m0,me) directly as follows: Let N ′ :=∗P (T \ {t̂}) be the expression for firing sequences w ∈ (T \ {t̂})∗ and N̂ ′ be the
result of replacing all places like in the the proof of Lemma 3.1. No we construct
T2 := (c2 + Γ∗

2)◦̂AtN̂
′ with

c2 := c−
t̂

+ {p̂+ 7→ ct̂(p
+) | p ∈ P} and

Γ2 := {{p̂s 7→ 1, ps 7→ 1} | p ∈ P \ {p1}, s ∈ {+,−}}

which expresses those firing sequences starting with t̂ and ending with markings
without tokens on p1. and analogously Te :=

(c−
t̂

+ {p̂+ 7→ ct̂(p
+) | p ∈ P}+ m+

e ) + {{p̂− 7→ 1, p− 7→ 1} | p ∈ P \ {p1}}∗◦̂AtN̂
′

which expresses those firing sequences starting with t̂ and ending with me. Using
Lemma 3.4 and other reformulations, we can construct

T := m+
0 ◦P N ′◦P\{p1}∗P\{p1}(T2)◦P\{p1}Te ∪m+

0 ◦P N ′◦Pm−
e .

Then, we construct T ′ according to Theorem 3.1. According to Condition 5 of
property T , R(T ) = R(T ′) is empty if and only if T ′ = ∅.

B Alternative proof of Lemma 4.1

Definition An expression T has the property T ′ if T has the property T in
which Condition T .4 is replaced by the following Condition T .4’: ∀p ∈ (P+

Ti
∪

P−
Ti

) Σ
g∈Γt

g(p) > 0.

Remark: T .4’ and T .3 together mean ∀a ∈ C(Ni) Σ
g∈Γt

g(a) > 0.

Lemma B.1 If the conditions T .1 - T .4 hold for t, then we can construct a t′

with R(t′) = R(t) such that conditions T .1 - T .4’ hold for t′ and the size only
increases in the last component.

Proof: It follows from Condition T .4 that there exists a sufficiently large h ∈ Γ∗
t

such that for all i

∀p ∈ PTi
d(p−) := h(p−)−m+(p−) + m+(p+) ≥ 1 ∧
d(p+) := h(p+) + m−(p−)−m−(p+) ≥ 1 ∧
(ct + h)(p−) ≥ m+(p−) ∧ (ct + h)(p+) ≥ m−(p+),
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and, additionally, according to Condition T .3,

∀w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
) d(w) := h(w)−m+(w)−m−(w) ≥ 1.

otherwise ∀a ∈ C(t) d(a) := h(a)

Now, we can define t′ with Kt′ = Kt, ct′ = ct and Γt′ = Γt ∪ {d}. Conditions 1
and 3 remain unchanged. Condition 2 still holds because for all p ∈ PTi

d(p−)− ind(d)(p−) =
h(p−)−m+(p−) + m+(p+)− (ind(h)(p−)− ind(m+)(p−)− ind(m−)(p−)) =

h(p−)− ind(h)(p−) + ind(m+)(p+) + ind(m−)(p−) =
h(p+)− ind(h)(p+) + ind(m+)(p+) + m−(p−)−m−(p+) + ind(m−)(p+) =

d(p+)− ind(d)(p+)

because the equation in Condition 2 was already fulfilled by h,m+ and m−.
Condition 4’ holds according to the definition of d, and it holds R(t) ⊆ R(t′)
since Lt ⊆ Lt′ . So what remains is to show that R(t′) ⊆ R(t):
Let m′ = m + ld ∈ Lt′ with m ∈ Lt and m′ |C(t)∈ R(t′), then for every Ti ∈ Kt,
there are mµ ∈ R(Ni) for all 1 ≤ µ ≤ 2l + 1 such that for all p ∈ PTi

mµ(p−) = m(p−) + (l − µ + 1)h(p−) + (µ− 1)d(p−)
mµ(p+) = m(p−) + (l − µ)h(p−) + µd(p−)

ml+1(p
−) = m′(p−) = m(p−) + ld(p)

ml+1(p
+) = m′(p+) = m(p+) + ld(p)

ml+1+µ(p−) = m(p+) + (l − µ + 1)d(p+) + (µ− 1)h(p+)
ml+1+µ(p+) = m(p+) + (l − µ)d(p+) + µh(p+)

with ind(m′) |C(Ti)∈ ml+1 + IdPTi
, mµ ∈ m+ + IdPTi

⊆ R(Ni) for all 1 ≤ µ ≤ l,
and, analogously, ml+1+µ ∈ m− + IdPTi

⊆ R(Ni).
Since mµ(p+) = mµ+1(p

−) for all 1 ≤ µ ≤ 2l and all p ∈ PTi
, we can concatenate

all the mµ’s to ind(m + lh) |C(Ti)∈ R(Ni) and, therefore, obtain m′ |C(t)= m +
lh |C(t)∈ R(t).
From this construction, it also follows that, in the proof of Lemma 4.1, we can
choose an l such that lf−h ≥ f . We can then proof the lemma with f ′ = lf−h+d,
under the assumption that conditions T .1 - T .4’ hold, and obtain k = k′l by
k′f ′ |C(t)= k′lf |C(t).

Proof:(of Lemma 4.1) Given f ∈
∑

g∈Γt

g + Γ∗
t and e ∈ (Γt ∪ −Γt)

∗ we have to find

a k ≥ 2 such that
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t).

For an elementary transition t with Kt = ∅, we have R(t) = ct+Γ∗
t and the state-

ment is easily fulfilled by choosing a sufficiently large k compensating negative
components in e.
Induction step: For every Ni ∈ Kt and for every tj ∈ Ti, let

fj :=
∑
g∈Γtj

f(wg)g, ej :=
∑
g∈Γtj

e(wg)g and hj :=
∑
g∈Γtj

ct(wg)g.
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Since f(wg) > 0 for every g ∈ Γtj , according to Condition T .3, we have fj ∈∑
g∈Γtj

g + Γ∗
tj
. This means fj fulfills the condition for f one level deeper.

When we use Condition T .1 and apply the lemma by induction for sub-transitions
tj of t two times for e as ejorhj and for f as fj, we conclude that there exist
kj, k

′
j ≥ 2 with

(ctj + kjfj) |C(tj), (ctj + kjfj + ej) |C(tj),
(ctj + k′jfj) |C(tj), (ctj + k′jfj + hj) |C(tj)∈ R(tj).

(1)

There exists a sufficiently large h ≥ 1 with hf + e ∈
∑

g∈Γt

g + Γ∗
t such that, for all

i and j, we have h = njkj = n′jk
′
j for some nj, n

′
j,

lj := nj(kjf(wctj
)− 1) + e(wctj

) > 0 and

n′j(k
′
jf(wctj

)− 1) + ct(wctj
) > 0

(3)

since f(wctj
) > 0. Now we have

ind(hf) |C(tj) =
∑

g∈{ctj }∪Γtj

hf(wg)g |C(tj)

= njkj

(
f(wctj

)ctj +
∑

g∈Γtj

f(wg)g

)
|C(tj)

= nj

(
(kjf(wctj

)− 1)ctj + (ctj + kjfj)
)
|C(tj)∈ R(tj)

∗

(4)

according to Condition T .5 and equation (1). The same holds (because of equa-
tion (3)) for

ind(hf + e) |C(tj)=
∑

g∈{ctj }∪Γtj

(hf + e)(wg)g |C(tj) =(
nj((kjf(wctj

)− 1)ctj + (ctj + kjfj)) + e(wctj
)ctj + ej

)
|C(tj) =(

ljctj + (nj − 1)(ctj + kjfj) + (ctj + kjfj + ej)
)
|C(tj) ∈ R(tj)

∗.

(5)

Analogously, we have ind(hf + ct) |C(tj)∈ R(tj)
∗ and, by combination of all tran-

sitions in Ti (like those in equations (4) and (5) ), we get

ind(hf |C(Ti), ind(2hf + ct) |C(Ti), ind(2hf + ct + e) |C(Ti)∈ R(Ni).

Since for all p ∈ (P+
Ti
∪ P−

Ti
) f(p) > 0, we can find a sufficiently large l such that,

by concatenation of ind(2hf + ct) |C(Ti) respectively ind(2hf + ct + e) |C(Ti) with
l − 2 times ind(hf) |C(Ti), we have (lhf + ct) |C(t), (lhf + ct + e) |C(t)∈ R(t).
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C Folding pushdown-stores into a nested Petri

net

Formally, a restricted priority-multipushdown-automaton is a one-way automaton
described by the 6-tuple

A = (k, Z, Σ, δ, z0, E)

with the set of states Z = Z ′ × {↑, ↓}k, the input alphabet Σ, the transition
relation

δ ⊆ (Z × (Σ ∪ {λ})× {0 . . . k} × {λ, 0, 1}k)× (Z × {λ, 0, 1}k),

initial state z0, the accepting states E ⊆ Z, the set of configurations CA =
Z×Σ∗× ({0, 1}∗)k, the initial configuration σA(x) = 〈z0, x, 0k〉 and configuration
transition relation

〈z, ax,g1d1, ...,gkdk〉 |A 〈z′, x,g1i1, ...,gkik〉

if and only if z, z′ ∈ Z, a ∈ Σ ∪ {λ}, 〈(z, a, j, d1, ..., dk), (z
′, i1, ...ik)〉 ∈ δ,

z = (z′′, a1, ..., ak), z′ = (z′′′, a′1, ..., a
′
k), aj =↑ ∨a′j =↓, and

∀i < j gi = λ ∧
∀i > j di 6= 1 ∧ ii 6= 1 ∧ ai = a′i ∧
∀i ≤ k(ai =↓ ∨di 6= 1) ∧ (a′i =↑ ∨ii 6= 1).

Furthermore, the condition dj 6= 0 ∧ ij 6= 0 can be established by creating an
intermediate state and a smaller j in the second transition.
Proof:(of Theorem 8.1) Given A, which has without loss of generality, only one
accepting configuration with all push-down stores empty and Σ = ∅, we add |Z ′|
push-down stores playing the role of the states (Only one of them has a zero
and the others are empty.). This allows us to set Z = {↑, ↓}k. Here, the end
state becomes the last push-down store and the start state the second last; thus,
without loss of generality the last 3 push-down stores never contain a 1. Then,
we construct a nested Petri net on 2k − 3 levels as follows:
Let Ph := {pi | h < i ≤ k} and P ′

h := {pi, p
′
i | h < i ≤ k}. The innermost

expression T0 is

T0 := {t | Kt = Γt = ∅ ∧ ∃〈(z, λ, 0, d1, ..., dk), (z, i1, ...ik)〉 ∈ δ ∧
∀i ≤ k (ct(p

−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) }

which corresponds to pushing and popping only zeros. The net N0 =∗P0(T0) is
used twice in

t1 = t(N0)◦{(p+
0 ,p−0

′
),(p−0 ,p+

0

′
)}

(t(N0) ◦Q{{p−i 7→ 1, p+
i
′ 7→ 1}{p+

j 7→ 1, p−j
′ 7→ 1} | 0 < i ≤ k ≥ j}∗)
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with Q := {(p−, p−), (p+, p+) | p ∈ P0}. This corresponds to a sequence pushing
zeros on the first push-down store and a later sequence (on P ′

0) popping the same

number of zeros from the first push-down store. In general, net N2h =∗Ph
(T2h)

is used twice in t2h+1 =

t(N2h) ◦{(p+
h ,p−h

′
),(p−h ,p+

h

′
)}

(t(N2h)◦Q{{p−i 7→ 1, p+
i
′ 7→ 1}{p+

i 7→ 1, p−i
′ 7→ 1} | h < i ≤ k, h ≤ j ≤ k}∗)

with Q := {(p−, p−), (p+, p+) | p ∈ Ph}. This corresponds to a sequence pushing
zeros on the h + 1-st push-down store and a later sequence (on P ′

h) popping the
same number of zeros from the first push-down store. This is used in T2h−1 :=
{t2h−1} ∪

{ t | Kt = Γt = ∅ ∧
∃〈(z, λ, h, d1, ..., dk), (z, i1, ...ik)〉 ∈ δ ∧
∃〈(z′, λ, h, d′1, ..., d

′
k), (z

′, i′1, ...i
′
k)〉 ∈ δ ∧

ih = d′h = 1 ∧ i′h = dh = λ ∧
∀h < i ≤ k (ct(p

−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) ∧

∀h < i ≤ k (ct(p
+
i
′
) = 1 ↔ di = 0) ∧ (ct(p

−
i
′
) = 1 ↔ ii = 0) },

which corresponds to pushing (respectively later simulated on P ′
h popping) a one

on the h-th push-down store.
Sequences in the net N2h−1 = ∗P ′

h−1
(T2h−1) correspond to ”folding” a pushing

and a popping sequence together where the sequence on P ′ has reverse order. It
appears in

t2h = t(N2h−1)◦Q{{p+
i 7→ 1, p+

i
′ 7→ 1}{p−i

′ 7→ 1, p+
h 7→ 1} | h < i ≤ k}∗)

with Q := {(p+, p+), (p+′
, p+′

), (p−
′
, p−

′
) | p ∈ Ph}. This matching of p+

i and
p+

i
′
corresponds to the moment where the h-th push-down store switches from

pushing to popping.
This is used in T2h := {t2h} ∪

{ t | Kt = Γt = ∅ ∧
∃〈(z, λ, h + 1, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ ∧
z = (a1, ..., ah−1, ↓, ah+1, ..., ak), z

′ = (a′1, ..., a
′
h−1, ↑, ah+1, ..., ak), ∧

∀h < i ≤ k (ct(p
−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) ∧

∀h < i ≤ k (ct(p
+
i
′
) = 1 ↔ di = 0) ∧ (ct(p

−
i
′
) = 1 ↔ ii = 0) }

which allows concatenating with the 0-test of the h-th push-down store in the
net N2h =∗Ph

(T2h). On the top level 2k − 4, we have T2k−4 := {t2k−4} with

t2k−4 = {p−k−1 7→ 1, p+
k 7→ 1}◦QN2k−5

with Q := {(p−, p−), (p+, p+) | p ∈ P ′
h}.
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Now, if we have a sequence w ∈ δ∗ of transitions of A leading from the start
configuration to an end configuration, then 1’s are only pushed or popped from
the first k − 3 push-down stores. We have to show that {p−k−1 7→ 1, p+

k 7→ 1} ∈
R(N2k−5) in order to obtain R(T2k−4) = {∅}.
By induction over h, we consider w ∈ {〈(z, λ, j, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ | j ≤
h}∗ to be a sequence of transitions of A such that,

• in the corresponding sequence of configurations 1’s are only pushed or
popped from the first h push-down stores and

• they are empty in the first and the last configuration.

In this case, according to the definition, the direction of ah cannot be changed
from ↓ to ↑. Thus, w can be decomposed into v1t1v2t2...vnwn...s2w2s1w1 = w
such that t1 (s1, respectively) with i < n is a transition in δ with j = h and
ij = 1 (dj = 1, respectively); and the vi and wi are sequences of transitions in δ∗

where no 1 is pushed or popped to the h’th push-down store.
Each of the vi or wi can be decomposed into minimal sequences w′

1t
′
1w

′
2t
′
2...w

′
m.

Here, each is starting and ending with the first h−1 push-down stores empty and
the t′i are those transitions where the push-down store number h− 1 is switched
from popping to pushing; that means aj =↑ ∧a′j =↓. The w′

i now have the same
property as w with h := h− 1.
For h = 0 a sequence w ∈ {〈(z, λ, 0, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ}∗ corresponds to
an element in R(N0).
By induction, we assume that, for every w′

i, we have a corresponding element in
R(N2h−1) and, thus, in R(t2h). Furthermore, for every t′i, we have a corresponding
element in R(T2h). Thus, for every vi and wi, we have corresponding elements in
R(N2h) which, together, yield a corresponding element in R(t2h+1). Furthermore,
for every pair ti, si, we have a corresponding element in R(T2h+1). Thus, for w,
we have a corresponding path in R(N2h+1). This completes the induction.
In the other direction, if R(T2k−4) 6= ∅, composing the corresponding transitions
in the appropriate way leads from the start to the end configuration.
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D Definitions pure

Multisets: {b 7→ f(b) | b ∈ B} =
[

b1
f(b1)

, b2
f(b2)

, ..., bn

f(bn)

]
=


f(b1)
f(b2)

...
f(bn)

 ∈ NB.

Restriction: f |A:= {b 7→ f(b) | b ∈ A} f |A:= {b 7→ f(b) | b 6∈ A} see page 4.
Star for a set M of multisets: M0 := {∅}, Mi+1 := Mi + M and M∗ :=

⋃
i M

i.

N◦QM :=
{

n |π1(Q) +m |π2(Q)

∣∣∣n ∈ N,m ∈ M,∀(a, b) ∈ Q n(a) = m(b)
}

.

◦̂A := ◦{(a,a)|a∈A}
Identity: IdQ := {{a 7→ 1, b 7→ 1} | (a, b) ∈ Q}∗.
For Q with π1(Q) and π2(Q) disjoint, we define ∗0

Q(M) := IdQ, ∗i+1

Q (M) :=

∗i

Q(M)◦Q(M + IdQ) and ∗Q(M) :=
⋃

i∗i

Q(M) see page 4.
Semilinear sets see Subsection 1.1.3
Petri net: N = (P, T, W ) with W ∈ NP×T∪T×P .
Firing: m[t〉m′, if m−W (., t) = m′ −W (t, .) ∈ NP .
Firing sequence m0[w〉mn, if m1, ...mn−1 exist with m0[t1〉m1[t2〉...[tn〉mn.
Copies: P+ := {p+ | p ∈ P}, P− := {p− | p ∈ P}, m− := {p− 7→ m(p) | p ∈ P}
and m+ := {p+ 7→ m(p) | p ∈ P}.
Reachability relation for t: R(t) :=

{
m− + m′+

∣∣m[t〉m′} = ct + IdP with

ct(p
−) := W (p, t) and ct(p

+) := W (t, p) for all p ∈ P , IdP := IdP̂ and P̂ :=
{(p+, p−) | p ∈ P}.
Reachability relation for T : R(T ) :=

⋃
t∈T

R(t). concatenation: ◦P := ◦P̂ .

Reachability relation for N : R(N) := R(T ∗) :=∗P (R(T )) with ∗P :=∗P̂ .
Reachability problem: (m−

0 + m+
e ) ∈ R(N)? see page 7.

Petri nets with inhibitor arcs: (P, T, W, I,m0,me) with W ∈ NP×T∪T×P and
I ⊆ P × T .
Firing: m[t〉m′, if m − W (., t) = m′ − W (t, .) ∈ NP and ∀p ∈ P (p, t) ∈ I →
m(p) = 0. see page 9.

R(tp1(N
′)) := {r ∈ R(N ′) | r(p−1 ) = r(p+

1 ) = 0}, R(N) :=∗P\{p1}(R(tp1(N
′)) ∪

R(t̂)) see page 10.
Expressions Lt, t, T, N, Kt and their carrier sets C(e), Γt, PT , At see page 12.
t(N), tP ′(N) see proof of Lemma 3.1.
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An expression T has the property T if ∀t ∈ T, ∀Ni =∗PTi
(Ti) ∈ Kt the following

conditions hold:

1. In recursive manner, Ti has

(a) the property T , and

(b) For all t′ ∈ Ti it holds ∀g ∈ {ct′} ∪ Γt′ ∃wg ∈ C(t′) g(wg) = 1,
∀g′ ∈

⋃
t′∈Ti

{ct′} ∪ Γt′ \ {g} g′(wg) = 0.

2. ∀g ∈ {ct} ∪ Γt,∀p ∈ PTi
g(p−)− ind(g)(p−) = g(p+)− ind(g)(p+), where

ind(g) :=
∑

t′∈Ti,g′∈{ct′}∪Γt′

g(wg′)g
′

3. ∀w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
) Σ

g∈Γt

g(w) > 0.

4. There are multisets ∃m+,m− ∈ R(Ni) with ∀p ∈ PTi

m+ |P−
Ti

∈ (ct + Γ∗
t ) |P−

Ti

∧((∀g ∈ Γt g(p−) = 0) → m+(p+) > m+(p−))∧

m− |P+
Ti

∈ (ct + Γ∗
t ) |P+

Ti

∧((∀g ∈ Γt g(p+) = 0) → m−(p−) > m−(p+)).

5. ct |C(t)∈ R(t).

See page 14 and Figure 2.
Order for multisets: Section 3.2 Size of an expression S(T ) =

∑
t∈T

{S(t) 7→ 1},

S(t) := (S(Kt), b2, b5 + |Γt|), bi = 0 if Condition T .i is fulfilled, and bi = 1 other-
wise. S(Kt) =

∑
Ni∈Kt

{S(Ni) 7→ 1}, S(Ni) := (sm+{|PTi
| 7→ 1}, S(Ti), b1b, |C(Ni)|)

with sm := max{s | ∃g, f, b2, b
′
1b, e, s

′ s′((s,g, b′1b, f)) > 0, S(Ti)((s
′, b2, e)) > 0}.

t|L see proof of Lemma 3.3, T◦QT ′ see proof of Lemma 3.4.
Monotone transitive closure mTC(φ) see page 18.
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