
On Codings of Traces

Extended Abstract
?

Volker Diekert Anca Muscholl Klaus Reinhardt

Institut für Informatik, Universität Stuttgart
Breitwiesenstr. 20-22, D-70565 Stuttgart

e-mail: {diekert,muscholl,reinhard}@informatik.uni-stuttgart.de

Abstract. The paper solves the main open problem of [BFG94]. We
show that given two dependence alphabets (Σ, D) and (Σ′, D′), it is de-
cidable whether there exists a strong coding h : M(Σ, D) −→ M(Σ′, D′)
between the associated trace monoids. In fact, we show that the problem
is NP-complete. (A coding is an injective homomorphism, it is strong if
independent letters are mapped to independent traces.) We exhibit an
example of trace monoids where a coding between them exists, but no
strong coding. The decidability of codings remains open, in general. We
have a lower and an upper bound, which show both to be strict. We fur-
ther discuss encodings of free products of trace monoids and give almost
optimal constructions.
In the final section, we state that the coding property is undecidable in
a naturally arising class of homomorphisms.

Topics: Formal languages, concurrency.

1 Introduction

The theory of traces has been recognized as an important tool for investigations
about concurrent systems, see [DR95]. The origins of the theory go back to
the work of Mazurkiewicz (trace theory), Karp/Miller, Keller (parallel program
schemata), and Cartier/Foata (combinatorics), see [Maz87, Kel73, CF69].
Traces are of particular interest for a description of concurrent processes, since
for many algorithms one can obtain complexity bounds, which are close to the
corresponding algorithms on words, e.g. test of equality [AG91], pattern match-
ing [HY92], or word problems [Die89, Die90]. A convenient data structure for
these algorithms is a representation of traces as a tuple of words. This is nothing
but a coding of a trace monoid in a direct product of free monoids and leads to
the general problem to find codings between trace monoids. This question has
been raised by Ochmański in [Och88] and reconsidered recently by Bruyère et
al. in [BFG94] (see also [BF95] in this volume). A natural class of codings of
trace monoids is given by strong codings. These are injective homomorphisms

? This research has been supported by the ESPRIT Basic Research Action No. 6317
ASMICS 2, Algebraic and Syntactic Methods In Computer Science.

such that independent letters are mapped to independent traces (similar to a
refinement of actions in a concurrent system). The main result of [BFG94] is
the decidability of the existence of a strong coding for two large families of trace
monoids, but the authors left open the general problem: given two trace monoids
M(Σ, D) and M(Σ′, D′), is it decidable whether there exists a strong coding of
one into the other. The main result of the present paper solves this problem. We
give a graph theoretical criterion for the existence of a strong coding thereby
showing its NP-completeness, see Thm. 9.
The paper contains several other results. As mentioned above, from the view-
point of applications, the most important codings are those into a direct product
of free monoids. Again, there is a characterization for strong codings, which is
directly related to a covering by cliques and which shows the NP-completeness
of this restricted problem, too. Much less is known if we consider codings (i.e.,
injective homomorphisms), instead of strong codings. For certain dependence
alphabets we are able to compute the least k for the existence of an encoding
of the trace monoid into a k-fold direct product (e.g., the path and the cycle
of n vertices). We show that if the dependence alphabet is a cycle of four ver-
tices, then the associated trace monoid has a coding into a direct product of
free monoids with two components, whereas at least four are needed for a strong
coding. The existence of a coding between trace monoids is NP-hard, but we
even do not know its decidability in the restricted case where the second monoid
is a direct product of free monoids. We have a lower bound for the minimal
number of components we need by the size of a maximal independent set and
an upper bound by the number of cliques which are needed to cover all vertices
and edges. The exact value remains unknown.
We give an example of a dependence alphabet (which is in fact a cograph), where
both the lower and the upper bounds are strict. Finally, we give almost optimal
constructions for encoding free products of trace monoids into direct products
of free monoids. The results can be used for encoding efficiently trace monoids
with a cograph dependence alphabet.
In the final section we reconsider the well-known result on the undecidability
of whether a given homomorphism of trace monoids is a coding. The proof
[HC72, CR87] uses a reduction of the Post correspondence problem, and it does
not apply to restricted classes of homomorphisms. In this paper we start with
a so-called strict morphism between independence alphabets. These morphisms
induce in a canonical way homomorphisms between the associated trace monoids.
(The homomorphism of the Projection Lemma is of this kind.) Thm. 22 states
that the coding property for this natural class of homomorphisms is undecidable.

2 Notations and Preliminaries

A dependence alphabet is a pair (Σ, D), where Σ is a finite alphabet and D ⊆
Σ × Σ is a reflexive and symmetric relation, called dependence relation. The
complement I = (Σ × Σ) \ D is called independence relation; it is irreflexive
and symmetric. The pair (Σ, I) is denoted independence alphabet. We view

both (Σ, D) and (Σ, I) as undirected graphs. The difference is that (Σ, D) has
self-loops (which however will be omitted in pictures). An undirected graph
is simply a pair (V, E), where E ⊆ V × V is a symmetric relation. We use the
following basic operations on graphs: complementation (V, E) = (V, (V ×V)\E),

disjoint union (V1, E1) ˙⋃(V2, E2) = (V1
˙⋃ V2, E1

˙⋃ E2), and complex product

(V1, E1) ∗ (V2, E2) = (V1
˙⋃ V2, E1

˙⋃ E2
˙⋃(V1 × V2) ˙⋃(V2 × V1)). (The smallest

family of graphs containing the one-point graphs which is closed under these
operations is the family of cographs, see e.g. [CLB81, CPS85].)
Given a dependence alphabet (Σ, D) (or an independence alphabet (Σ, I) resp.)
we associate the trace monoid M(Σ, D). This is the quotient monoid Σ∗/{ab =
ba | (a, b) ∈ I}; an element t ∈ M(Σ, D) is called a trace, the length |t| of a
trace t is given by the length of any representing word. By alph(t) we denote
the alphabet of a trace t, which is the set of letters occurring in t. The initial
alphabet of t is the set in(t) = {x ∈ Σ | ∃t′ : t = xt′}. By 1 we denote both the
empty word and the empty trace. Traces s, t ∈M(Σ, D) are called independent,
if alph(s)× alph(t) ⊆ I. We simply write (s, t) ∈ I in this case. A trace t 6= 1 is
called a root, if t = un implies n = 1, for every u. A trace t is called connected,
if alph(t) induces a connected subgraph of the dependence alphabet (Σ, D).
The constructions disjoint union and complex product resp., on dependence
alphabets correspond to the direct product and the free product (= direct sum
in the category of monoids) resp., for the associated trace monoids. Thus, we have

M((Σ1, D1) ˙⋃(Σ2, D2)) = M(Σ1, D1)×M(Σ2, D2) and M((Σ1, D1)∗(Σ2, D2)) =
M(Σ1, D1) ∗M(Σ2, D2). The situation for independence alphabets is dual.
Let Σ′ ⊆ Σ be a subalphabet and D′ = (Σ′ × Σ′) ∩D the induced dependence
relation. The canonical projection πΣ′ : M(Σ, D) → M(Σ′, D′) is induced by
πΣ′(a) = a, if a ∈ Σ′ and πΣ′(a) = 1 otherwise. Consider (Σ, D) written as

a union of cliques, i.e., (Σ, D) = (
⋃k

i=1 Σi,
⋃k

i=1 Σi × Σi). Then we have the
following well-known Projection Lemma:

Proposition 1 [CL85, CP85]. Let (Σ, D) = (
⋃k

i=1 Σi,
⋃k

i=1 Σi×Σi). Then the
canonical homomorphism

π : M(Σ, D)→
k

∏

i=1

Σ∗
i , t 7→ (πΣi

(t))1≤i≤k

is injective.

In the following a homomorphism h : M(Σ, D) → M(Σ′, D′) is called a coding,
if it is injective. It is called a strong homomorphism, if independent letters are
mapped to independent traces, i.e., if (a, b) ∈ I implies (h(a), h(b)) ∈ I ′ for
all a, b ∈ Σ. Of particular interest are strong codings, a notion which has been
introduced in [BFG94].
The next proposition belongs probably to folklore:

Proposition 2. Let (Σ, D) be a dependence alphabet and k ≥ 1. The following
assertions are equivalent:

1. The dependence alphabet (Σ, D) contains an independent set of size k.
2. There exists a strong coding h : INk →M(Σ, D).
3. There exists a coding h : INk →M(Σ, D).

Proof. Since the implications 1) ⇒ 2) ⇒ 3) are obvious, we show 3) ⇒ 1). Let
{a1, . . . , ak} be a set of generators of INk and let ti = h(ai), 1 ≤ i ≤ k. By a result
of Duboc [Dub86] the equations titj = tjti (1 ≤ i 6= j ≤ k) yield the existence
of pairwise independent, connected roots x1, . . . , xl, together with nonnegative
integers nij (1 ≤ i ≤ k, 1 ≤ j ≤ l) such that ti = xni1

1 · · ·xnil

l for 1 ≤ i ≤ k. The
set of roots {x1, . . . , xl} generates a commutative submonoid of M(Σ, D), and
the coding factorizes as h : INk → INl →M(Σ, D). With h being injective we have
k ≤ l by linear algebra. Finally, it suffices to choose some letter bi ∈ alph(xi),
1 ≤ i ≤ l, in order to establish the result.

Corollary 3. It is NP-complete to decide whether there exists a (strong) cod-
ing of INk into M(Σ, D). Therefore, the problem whether there exists a (strong)
coding between two given trace monoids is (at least) NP-hard.

3 Characterization of the existence of strong codings

Strong codings between trace monoids are closely related to morphisms of (in-)
dependence alphabets.

Definition 4. Let (V, E) and (V ′, E′) be undirected graphs. A morphism H :
(V, E)→ (V ′, E′) is a relation between vertices H ⊆ V ×V ′ such that (a, b) ∈ E
implies H(a)×H(b) ⊆ E′ for all a, b ∈ V . (By H(a) we mean the set {α ∈ V ′ |
(a, α) ∈ H} for a ∈ V .)

Obviously, undirected graphs with these morphisms form a category. For H ⊆
V ×V ′ we denote by H−1 the inverse relation H−1 = {(α, a) ∈ V ′×V | (a, α) ∈
H}. A relation H ⊆ V × V ′ is a morphism H : (V, E) → (V ′, E′) if and only
if H−1 : (V ′, E′) → (V, E) is a morphism on the complement graphs in the
opposite direction. Hence, complementation yields a duality of the category.
The basic relation between strong homomorphisms of trace monoids and mor-
phisms of undirected graphs is given by the next lemma, which follows directly
from the above definitions.

Lemma5. Let h : M(Σ, D)→M(Σ′, D′) be a homomorphism of trace monoids.
Define H ⊆ Σ× Σ′ as

H = {(a, α) ∈ Σ× Σ′ | α ∈ alph(h(a))}.

The following assertions are equivalent:

1. h : M(Σ, D)→M(Σ′, D′) is a strong homomorphism.
2. H : (Σ, I)→ (Σ′, I ′) is a morphism of independence alphabets.
3. H−1 : (Σ′, D′)→ (Σ, D) is a morphism of dependence alphabets.

Definition 6. A morphism G : (Σ′, D′) → (Σ, D) of dependence alphabets is
called covering, if for all a ∈ Σ there exists α ∈ Σ′ with a ∈ G(α) and if for all
(a, b) ∈ D, a 6= b there exists (α, β) ∈ D′, α 6= β with (a, b) ∈ G(α)×G(β).

The following lemma is stated with a different notation in [BFG94].

Lemma7. Let h : M(Σ, D) → M(Σ′, D′) be a strong coding. Define H =
{(a, α) ∈ Σ× Σ′ | α ∈ alph(h(a))}. Then H−1 : (Σ′, D′)→ (Σ, D) is a covering
of dependence alphabets.

Proof. By Lem. 5 the relation H−1 is a morphism. Let a ∈ Σ, then h(a) 6= 1,
since h is a coding. Hence a ∈ H−1(α) for some α ∈ Σ′. Now, let (a, b) ∈ D,
a 6= b. Since h(ab) 6= h(ba) we find by Prop. 1 a pair (α, β) ∈ D′, α 6= β
such that πα,βh(ab) 6= πα,βh(ba). Thus, either (a, b) ∈ H−1(α) × H−1(β) or
(a, b) ∈ H−1(β)×H−1(α) holds. In any case H−1 is a covering.

Lemma8. Let H ⊆ Σ × Σ′ be a relation such that H−1 : (Σ′, D′) → (Σ, D) is
a covering of dependence alphabets.
Then there exists a strong coding h : M(Σ, D) → M(Σ′, D′) such that H =
{(a, α) ∈ Σ× Σ′ | α ∈ alph(h(a))}.

Proof. Let Σ = {a1, a2, ...} and Σ′ = {α1, α2, ...}. For each i define
−−−→
H(ai) =

αi1 · · ·αik
and
←−−−
H(ai) = αik

· · ·αi1 , where H(ai) = {αi1 , . . . , αik
} and i1 < · · · <

ik. For i = 1, 2, . . . let

h(ai) = (
−−−→
H(ai))i ←−−−H(ai).

Lem. 5 states that h is a strong homomorphism. We have to show that h is
injective, only. First note that h(a) 6= 1 for all a ∈ Σ. Assume by contradiction
that h(x) = h(y) for some x 6= y. Let x be of minimal length with this property.
Then x = ax′ for some a ∈ Σ, x′ ∈M(Σ, D). Since h is strong and h(x) = h(y),
there is some b ∈ alph(y) with (a, b) ∈ D. Hence we can write y = zby′ for some
b ∈ Σ, y′, z ∈M(Σ, D) such that (a, z) ∈ I and (a, b) ∈ D.
We have a 6= b since x is of minimal length. Since H−1 is a covering, we find
(α, β) ∈ D′, α 6= β such that α ∈ alph(h(a)) and β ∈ alph(h(b)). For the
contradiction it is enough to show πα,βh(x) 6= πα,βh(y). Since h is strong, we
have πα,βh(z) = 1. We may assume that α comes before β in Σ′. Let a = ai and
b = aj (i 6= j). We have πα,βh(a) = (αβε)i (βεα) and πα,βh(b) = (αδβ)j (βαδ)
for some δ, ε ∈ {0, 1}. It follows that neither πα,βh(a) is a prefix of πα,βh(y) nor
πα,βh(zb) is a prefix of πα,βh(x). Hence h(x) = h(y) is impossible.

The following result solves the main open problem of [BFG94]. It follows by the
conjunction of Lem. 7 and Lem. 8.

Theorem9. Let (Σ, D) and (Σ′, D′) be dependence alphabets. The following
assertions are equivalent:

1. There exists a strong coding h : M(Σ, D)→M(Σ′, D′).

2. There exists a covering G : (Σ′, D′)→ (Σ, D) of dependence alphabets.

Furthermore there are effective constructions between h and G such that G =
H−1 and H = {(a, α) ∈ Σ× Σ′ | α ∈ alph(h(a))}.

Corollary 10. The following problem is NP-complete:
Input: Dependence alphabets (Σ, D), (Σ′, D′).
Question: Does there exist a strong coding from M(Σ, D) into M(Σ′, D′)?

4 Codings into direct products of free monoids

In this section we investigate codings of a trace monoid into a k-fold direct
product of free monoids. We are interested in the smallest possible value of k.
For strong codings the situation is clear, as stated in Prop. 12 below. (This result
follows also from [BFG94].)

Lemma11. Let h : M(Σ, D)→
∏k

i=1 Σ∗
i be a strong coding into a k-fold direct

product of free monoids. Let πi = πΣi
denote the canonical projection onto the

i-th component and Ci = {a ∈ Σ | πih(a) 6= 1}, i = 1, . . . , k. Then Ci is a

(dependence) clique for all i = 1, . . . , k and (Σ, D) = (
⋃k

i=1 Ci,
⋃k

i=1 Ci × Ci).

Proof. Since h is injective, each (a, b) ∈ D is contained in some Ci×Ci. The set
Ci is a clique, i = 1, . . . , k, since h is strong.

Proposition 12. Let (Σ, D) be a dependence alphabet and |Σi| ≥ 2 for i =

1, . . . , k. Then there exists a strong coding h : M(Σ, D) →
∏k

i=1 Σ∗
i if and only

if (Σ, D) allows a covering by k cliques. In particular, deciding the existence of
strong codings into k-fold direct product of free monoids is NP-complete.

Proof. One direction is Lem. 11, the other follows from the Projection Lemma,
Prop. 1. The question, whether the vertices and edges of a given graph can be
covered by k cliques, is NP-complete, see [GJ78] for details.

4.1 A lower bound

We now turn to the problem of codings into direct products without the property
of being a strong homomorphism. The following example shows a dependence
alphabet where the existence of a coding into a k-fold direct product of free
monoids also requires a covering by k cliques. Hence, in the example, the bound
of Prop. 12 is optimal for codings, too.

Example 1. Let (Σ, D) = Pn be the path of length n ≥ 1, i.e., Σ = {a1, . . . , an}

with D = {(ap, aq) | 1 ≤ p, q ≤ n, |p− q| ≤ 1}. Suppose h : M(Σ, D)→
∏k

i=1 Σ∗
i

is a coding. Then we have k ≥ n− 1.

Proof. Assume by contradiction that there is an embedding h into a k-fold direct
product, k ≤ n − 2. For 1 ≤ m < n let Am = {i | 1 ≤ i ≤ k, hi(amam+1) 6=

hi(am+1am)}, with hi = πih. Clearly, Am 6= ∅ and |
⋃n−1

m=1 Am| ≤ n−2. Moreover,
for every 1 ≤ l < m < n with m ≥ l + 2 we have Am ∩ Al = ∅ (since {am+1} ×
{al, al+1} ⊆ I and thus hi(am+1) = 1 for i ∈ Al).

Now, let 1 ≤ p < q ≤ n with q − p minimal such that |
⋃q−1

m=p Am| ≤ q − p − 1.
Then Am ∩ Am+1 6= ∅ for every p ≤ m < q − 1 follows by the minimality
of q − p, together with the above observation. Furthermore, we have |Am ∪
Am+1| ≥ 2 (otherwise, it is easy to see that nonnegative integers r, s ≥ 1 exist,
such that h(ar

mam+1a
s
m+2) = h(as

m+2am+1a
r
m)). We can now deduce that after

renumbering we have Ap = {p}, Am = {m − 1, m} (p < m < q − 1) and
Aq−1 = {q − 2}.
The final step is to show the existence of integers ki ≥ 1 (p ≤ i ≤ q) with

h(a
kp
p · · · a

kq
q) = h(a

kq
q · · · a

kp
p) (note q > p), which yields the contradiction. For

this, write hm(am) = rsm
m and hm(am+2) = rtm

m , for some words rm and integers
sm, tm ≥ 1, p ≤ m ≤ q − 2. The claimed ki, p ≤ i ≤ q, are now chosen as a
(positive) solution of the system of (q − p− 2) equations sm · km = tm · km+2.

Remark. It is interesting to note that if (Σ, D) corresponds to Cn (the cycle of
length n) and n ≥ 5, then the optimal k for encoding M(Σ, D) into a k-fold
direct product of free monoids is again k = n− 1. The lower bound can be seen
using the above result on |

⋃n−1
m=1 Am|. For C4 we can do better, see Ex. 2 below.

In the following we denote by α(Σ, D) the size of a maximal independent set of
(Σ, D). Lem. 11 yields the following obvious lower bound.

Proposition 13. Let h : M(Σ, D) →
∏k

i=1 Σ∗
i be a coding. Then we have

α(Σ, D) ≤ k.

Proof. INα(Σ,D) is a submonoid of M(Σ, D).

4.2 Inductive methods

The following example (also used in [BF95]) provides two observations: For some
codings we can achieve the lower bound α(Σ, D) of Prop. 13, and we may find
a coding into a k-fold direct product, where no strong coding exists.

Example 2. Let (Σ, D) be a C4, i.e., a cycle with four letters.

(Σ, D) =
a − d
| |
b − c

Then there is a coding h : M(Σ, D) → {a, b}∗ × {c, d}∗. Thus for a coding a
2-fold (2 = α(Σ, D)) direct product of free monoids is enough, whereas for a
strong coding we need four components by Prop. 12.

Proof. Choose any nonnegative integers m1, m2, n1, n2 > 0 such that the matrix
(

m1 n1

m2 n2

)

is non-singular. Define h : M(Σ, D)→ {a, b}∗ × {c, d}∗ by

h(a) = (am1 , cn1), h(b) = (bm1 , dn1), h(c) = (am2 , cn2), h(d) = (bm2 , dn2).

It is easily seen that h is injective. The basic observation is that M(Σ, D) has
the algebraic structure of a free product of IN2 by IN2.

In fact, Ex. 2 reveals a more general principle.

Proposition 14. Let hj : M(Σj , Dj) →
∏k

i=1 Γ∗
i be codings such that |Γi| ≥ 2

and πihj(a) 6= 1 for all a ∈ Σj, i = 1, . . . , k, j = 1, . . . , m. Then there exists a

coding h :
m
∗

j=1
M(Σj , Dj) →

∏k

i=1 Γ∗
i , where

m
∗

j=1
M(Σj , Dj) denotes the m-fold

free product. Furthermore, we find h such that πih(a) 6= 1 for all a ∈ ˙⋃m

j=1 Σj

and i = 1, . . . , k.

Proof. (Sketch) For each j replace Γi by some Γij such that the alphabets become
disjoint for different j. The codings hj define a canonical homomorphism h :
m
∗

j=1
M(Σj , Dj)→

∏k
i=1(

˙⋃m

j=1 Γij)
∗. Since πihj(a) 6= 1 it is easy to see that h is

a coding. Furthermore, we have πih(a) 6= 1 for all a ∈ ˙⋃m

j=1 Σj .

Finally, since |Γi| ≥ 2 for all i = 1, . . . , k, we can code (˙⋃m

j=1 Γij)
∗ into Γ∗

i .

Corollary 15. Let k, m ≥ 1 and a, b different letters, a 6= b. Then there exists

a coding h :
m
∗

i=1
INk →

∏k
i=1{a, b}∗.

Unfortunately, the hypothesis πihj(a) 6= 1 of Prop. 14 is very strong. As soon as
(Σ, D) contains three letters a, b, c such that (a, b) ∈ D, (a, c) ∈ I, and (b, c) ∈ I
it cannot be satisfied anymore. Even for cographs (Σ, D) the number k = α(Σ, D)
is, in general, not large enough in order to allow a coding of M(Σ, D) into a k-
fold direct product of free monoids. We have the following example showing the
strictness of our lower and upper bounds:

Example 3. Let the dependence alphabet be the following cograph:

(Σ, D) =

a b c d

p q r s
@

@
�

�
@

@
�

�
HHHHHH

������

HHHHHH

������

@
@
�

�
PPPPPPPPP

���������

, i.e., (Σ, I) =

a d p s

c b r q

Then we have α(Σ, D) = 2 and M(Σ, D) = ({a, b}∗×{c, d}∗)∗({p, q}∗×{r, s}∗).
The least k such that a coding h : M(Σ, D)→

∏

1≤i≤k Σ∗
i exists is k = 3.

Proof. (Sketch) First assume h : M(Σ, D) → Σ∗
1 × Σ∗

2 would be a coding. A
combinatorial argument yields the existence of letters x ∈ {a, b, c, d} and y ∈

{p, q, r, s} such that h(x) = (u, 1), h(y) = (1, v) for some u ∈ Σ∗
1, v ∈ Σ∗

2. Then
h(xy) = h(yx) = (u, v) contradicting xy 6= yx.
Finally, consider the homomorphism h : M(Σ, D) → {a, b, p, q}∗ × {r, s, e}∗ ×
{c, d, f}∗ given by the following table (where the columns give h(x), x ∈ Σ):

h a b c d p q r s
{a, b, p, q} a b 1 1 p q 1 1
{r, s, e} e e e e 1 1 r s
{c, d, f} 1 1 c d f f f f

To check injectivity, note that for t ∈M(Σ, D), h(t) allows to decode the initial
alphabet of t: if the 2nd (resp. 3rd) component starts in {r, s} (resp. in {c, d})
then the corresponding letter belongs to in(t). Otherwise we have e and f in the
last two components, which restricts in(t) to the set {a, b, p, q}, which in turn is
identified by the first component of the encoding.

The next results concern the special case of embedding trace monoids with
cograph dependence alphabets into direct products of free monoids. Consider
two codings h1 : M1 = M(Σ1, D1) →

∏k

i=1 Σ∗
i and h2 : M2 = M(Σ2, D2) →

∏l
j=1 Γ∗

j . Whereas the direct product M1 ×M2 can be embedded into a (k + l)-
fold direct product (a tight bound), we are able to obtain a better upper bound
for the free product M1 ∗M2. The next lemma presents an inductive method for
embedding free products.

Lemma16. Let M1 = M(Σ1, D1), M2 = M(Σ2, D2) be given trace monoids.
Let Σ1, Σ2 be pairwise disjoint, let Γ be an alphabet and x /∈ Γ a new letter.
Then there exists a coding h : M1 ∗ (M2 × Γ∗)→ (M1 ∗M2)× (Γ ∪ {x})∗.

Proof. Consider the homomorphism h : M1∗(M2×Γ∗)→ (M1∗M2)×(Γ∪{x})∗

given by

h(a) =

(a , x) for a ∈ Σ1

(a , 1) for a ∈ Σ2

(1 , a) for a ∈ Γ

Note that h allows the decoding of initial alphabets as follows. The 2nd com-
ponent of an encoded trace h(z), πΓ∪{x}h(z), starts by a ∈ Γ if and only if a
belongs to the initial alphabet of z, in(z). Otherwise, a letter b ∈ (Σ1∪Σ2)∩in(z)
can be determined using πΣ1∪Σ2

h(z) = πΣ1∪Σ2
z.

Theorem17. Let h1 : M(Σ1, D1) →
∏k

i=1 Σ∗
i and h2 : M(Σ2, D2) →

∏l

j=1 Γ∗
j

be codings, k, l ≥ 1. Then there exists a coding of M(Σ1, D1) ∗M(Σ2, D2) into a
(k + l − 1)-fold direct product of free monoids. Moreover, this bound is optimal,
in general.

Proof. Clearly, for trace monoids Mi, Ni such that Mi can be embedded into Ni

(i = 1, 2), we can embed M1 ∗M2 canonically into N1 ∗N2. Thus, assume that

M1 = M(Σ1, D1) =
∏k

i=1 Σ∗
i and M2 = M(Σ2, D2) =

∏l

j=1 Γ∗
j holds and let

w.l.o.g. l ≥ 2. By Lem. 16 we can embed (
∏k

i=1 Σ∗
i) ∗ ((

∏l−1
j=1 Γ∗

j)× Γ∗
l) into the

monoid ((
∏k

i=1 Σ∗
i) ∗ (

∏l−1
j=1 Γ∗

j))× (Γl ∪̇{x})
∗. By induction, the left operand of

the outer direct product can be embedded into a (k + l− 2)-fold direct product,
which yields the result.
The lower bound of this construction is obtained by generalizing Ex. 3 to the
monoid (

∏k
i=1{a, b}∗) ∗ (

∏l
j=1{p, q}∗).

We consider in Thm. 19 below a nearly optimal method (with regard to the
number of components) of encoding m-fold free products, m ≥ 3, into direct
products of free monoids. Let us start with a technical

Lemma18. Let k, m ≥ 2 and let Σij be pairwise disjoint alphabets, i = 1, . . . , k,

j = 1, . . . , m. Then there exists a coding h :
m
∗

j=1
(
∏k

i=1 Σ∗
ij) → (

⋃m

j=1 Σ1,j)
∗ ×

(
m
∗

j=1
(IN×

∏k
i=2 Σ∗

ij)).

Proof. Let xj , j = 1, . . . , m, be new letters. We identify {xj}
∗ ×

∏k
i=2 Σ∗

ij with

IN×
∏k

i=2 Σ∗
ij . The following homomorphism h is easily seen to be injective:

h(a) =

{

(a , (xj , 1)) if a ∈ Σ1j for some 1 ≤ j ≤ m
(1 , (1, a)) if a /∈

⋃m
j=1 Σ1j

The theorem below can be applied in conjunction with Lem. 16 in order to
encode m-fold free products efficiently for m ≥ 3. (Lem. 16 is used for reducing
the number of components.)

Theorem19. Let hj : M(Σj , Dj) →
∏k

i=1 Γ∗
ij be codings, j = 1, . . . , m, and

a 6= b. Then there exists a coding h :
m
∗

j=1
M(Σj , Dj)→

∏2k
i=1{a, b}∗.

Proof. Assume Γij to be pairwise disjoint. By repeated application of Lem. 18

we obtain a coding h′ :
m
∗

j=1
(
∏k

i=1 Γ∗
ij)→

∏k
i=1 Θ∗

i ×(
m
∗

j=1
INk), with Θi =

⋃m
j=1 Γij

for i = 1, . . . , k. By standard methods we encode Θ∗
i into {a, b}∗ and, by Cor. 15,

m
∗

j=1
INk into

∏2k
i=k+1{a, b}∗. The result follows by composition with the coding of

m
∗

j=1
M(Σj , Dj) into

m
∗

j=1
(
∏k

i=1 Γ∗
ij).

Remark. Note that already for m = 2 the lower bound forThm. 19 is by Thm. 17
the value 2k − 1. Hence, Thm. 19 gives an almost optimal construction.

5 Clique-preserving morphisms

Throughout this section the notion of clique is meant w.r.t. independence alpha-
bets.

Definition 20. A clique-preserving morphism of independence alphabets H :
(Σ, I) → (Σ′, I ′) is a relation H ⊆ Σ × Σ′ such that H(A) = {α ∈ Σ′ | (a, α) ∈
H, a ∈ A} is a clique of (Σ′, I ′) whenever A ⊆ Σ is a clique of (Σ, I).

A clique-preserving morphism H ⊆ Σ× Σ′ yields in a natural way a homomor-
phism h : M(Σ, D) → M(Σ′, D′) by letting h(a) =

∏

α∈H(a) α for a ∈ Σ. Note

that the product is well-defined since H(a) is (by definition) a clique, i.e., a set
of commuting elements. (In fact, our construction is a faithful covariant functor
from independence alphabets to trace monoids.)
The most prominent homomorphism of trace monoids arising this way is the cod-
ing used in the Projection Lemma, Prop. 1. Write (Σ, D) = (

⋃k
i=1 Σi,

⋃k
i=1 Σi×

Σi) and let Σ′ = ˙⋃k

i=1 Σi be the disjoint union. The identity relations idΣi
⊆

Σi×Σi induce in a natural way a relation H ⊆ Σ×Σ′ which by abuse of language
can be written as H =

⋃k
i=1 idΣi

⊆ Σ × Σ
′. The associated homomorphism h is

exactly the strong coding of Prop. 1, h : M(Σ, D)→
∏k

i=1 Σ∗
i .

Remark. Note that a clique-preserving morphism is not a morphism of undi-
rected graphs as defined in Sect. 3, in general. The reason is that for (a, b) ∈ I
we may have H(a) ∩H(b) 6= ∅. Therefore the induced homomorphisms of trace
monoids are not strong, in general.

The following proposition is in major contrast to the final result of Thm. 22
below.

Proposition 21. Let H ⊆ Σ × Σ′ be a relation such that H(a) is a clique of
(Σ′, I ′) for all a ∈ Σ. Then the induced homomorphism h : Σ∗ →M(Σ′, D′) with
h(a) =

∏

α∈H(a) α is injective if and only if for all a, b ∈ Σ, a 6= b there exists

some (α, β) ∈ D′, α 6= β with α ∈ H(a), β ∈ H(b).

It is well-known that it is undecidable whether a homomorphism of trace monoids
is injective, see [HC72, CR87]. The following theorem sharpens this result in the
sense that we show the undecidability for a more natural class of homomorphism.

Theorem22. Given a clique-preserving morphism of independence alphabets
H : (Σ, I) → (Σ′, I ′), it is undecidable whether the associated homomorphism
h : M(Σ, D)→M(Σ′, D′), h(a) =

∏

α∈H(a) α for a ∈ Σ, is a coding.

The proof of Thm. 22 is a technical and involved reduction of the halting problem
of a two-counter machine. For lack of space we omit the details and refer to the
full version of this paper.

6 Conclusion and open problems

In this paper we have solved the problem of the existence of strong codings
for trace monoids by giving a NP-complete graph criterion. Whether or not
the existence of codings is decidable remains an interesting open question. For

strong codings into a k-fold direct product of free monoids we know the smallest
possible value of k. For codings, we know a lower and an upper bound for k,
only. It is still possible that the smallest k is uncomputable.
We have extended a well-known undecidability result to a very natural class of
homomorphism. The proof (not included in the present extended abstract) is
very complicated. It would be interesting to find a simple direct proof.

References

[AG91] C. Àlvarez and J. Gabarró. The parallel complexity of two problems on con-
currency. Information Processing Letters, 38:61–70, 1991.

[BF95] V. Bruyère and C. De Felice. Trace codings. This volume.

[BFG94] V. Bruyère, C. De Felice, and G. Guaiana. Coding with traces. In Proc. of

STACS’94, LNCS 775, pp. 353–364. Springer, 1994.
[CF69] P. Cartier and D. Foata. Problèmes combinatoires de commutation et

réarrangements. Lecture Notes in Mathematics 85. Springer, 1969.
[CL85] M. Clerbout and M. Latteux. Partial commutations and faithful rational

transductions. Theoretical Computer Science, 35:241–254, 1985.
[CLB81] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible

graphs. Discrete Appl. Math., 3:163–174, 1981.
[CP85] R. Cori and D. Perrin. Automates et commutations partielles. R.A.I.R.O. —

Informatique Théorique et Applications, 19:21–32, 1985.
[CPS85] D. G. Corneil, Y. Pearl, and L. K. Stewart. A linear recognition algorithm

for cographs. SIAM Journal of Computing, 14:926–934, 1985.
[CR87] M. Chrobak and W. Rytter. Unique decipherability for partially commutative

alphabets. Fundamenta Informaticae, X:323–336, 1987.
[Die89] V. Diekert. Word problems over traces which are solvable in linear time.

Theoretical Computer Science, 74:3-18, 1990.
[Die90] V. Diekert. Combinatorics on Traces. LNCS 454. Springer, 1990.
[DR95] V. Diekert and G. Rozenberg, eds. The Book of Traces. World Scientific,

Singapore, 1995. To appear.
[Dub86] C. Duboc. On some equations in free partially commutative monoids. Theo-

retical Computer Science, 46:159–174, 1986.
[GJ78] M. Garey and D. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. Freeman, San Francisco, 1978.
[HC72] G. Hotz and V. Claus. Automatentheorie und Formale Sprachen, Band III.

Bibliographisches Institut, Mannheim, 1972.
[HY92] K. Hashiguchi and K. Yamada. String matching problems over free partially

commutative monoids. Information and Computation, 101:131–149, 1992.
[Kel73] R. Keller. Parallel program schemata and maximal parallelism I. Fundamen-

tal results. Journal of the ACM, 20:514–537, 1973.
[Maz87] A. Mazurkiewicz. Trace theory. In Petri Nets, Applications and Relationship

to other Models of Concurrency, LNCS 255. Springer, 1987.
[Och88] E. Ochmański. On morphisms of trace monoids. In Proc. of STACS’88, LNCS

294, pp. 346–355. Springer, 1988.

This article was processed using the LATEX macro package with the LLNCS document
class.

