The complexity of the bigamist matching problem

Klaus Reinhardt
Universitat Tiibingen, Germany,
reinhard@informatik.uni-tuebingen.de

April 12, 2006

Abstract

We describe a polynomial time algorithm to construct a maximal
bigamist matching for a given bipartite graph with red and blue edges,
that is the maximal set of vertex disjoint triples comnsisting of one
bigamist vertex connected to two monogamist vertices with two dif-
ferent colors. This solves an open problem in [SGYBO05]. As a method
we use a ”“double reachability” algorithm to find a simple path in an
undirected switch graph, which is equivalent to finding an augmenting
path for the bigamist matchings. Furthermore, we show that some
other problems of this kind are NP-complete.

1 Introduction

There is a well known polynomial time algorithm for constructing a maximal
matching, that is a maximal set of vertex disjoint edges in a (possibly bipar-
tite) graph. The idea of the algorithm is to continuously improve a matching
as long as this is possible by searching for an augmenting path starting and
ending with a previously unmatched vertex and consisting of alternating old
and new edges. In [HK73]| this is described as an nd/2 algorithm.

In [ARZ99] it is shown that matching is in nonuniform SPL. On the other
hand 3-dimensional matching (marriage for 3 sexes) is NP-complete [GJ78].
In more general terms, it is shown in [KH83] that it is NP-complete for any
connected graph G with more than 2 vertices (like the “triangle” G = K3
in 3-dimensional matching) to decide whether a given graph H can be “G-
factored” (that means disjoint copies of G form a spanning subgraph of H).
In particular, this holds for G = P5 the path of length 2. Here, however,
the input does not distinguish the vertices of the graph according to their

possible positions in G, i.e. which vertices can be the middle vertex of Pj.
This will change in the following problem.

The maximum bigamist matching problem was introduced in [SGYBO05] un-
der the name Maximum Synchronized Matching problem and the authors
described a polynomial-time approximation scheme.

Given: a bipartite graph G = (B, M, E), where B is the set of bigamist
vertices and M are the monogamists; additionally, the edges have the colors
red and blue; thus, F = E,. U E, C B x M. The set of edges F is reflecting
the "who would marry whom” relation.

Wanted: A maximum number of bigamists that could marry a monogamist
over a red edge and, at the same time, another monogamist over a blue edge
(otherwise a bigamist stays unmarried) In other words a maximum number
of pairwise vertex-disjoint triples (v, u,u") with (v,u) € E, and () € Ey.

NERNES 2

The problem motivated by multiplexing schemes for generic SNP genotyp-
ing assays in [SGYBO05] where the bigamists are allele-pairs (s,s”) and the
monogamists are features which are informative for s (blue edge) or s’ (red
edge). This suggests that the union E = E, U Ej, is disjoint, for our solution
however, we do not need this requirement and generalize in this way also
over the case without distinction of the colors. This case without distinction
of the colors could also be solved by repeatedly applying the polynomial time
algorithm in [Cor88] for deciding Lovasz’s general graph factoring problem?
if there are no gaps > 1.

Note that the decision problem for a perfect bigamist matching is easily seen
to be equivalent to a usual perfect matching by splitting the bigamists into
red and blue “halfs”. Therefore, the optimization problem is of particular
interest.

In Section 2, we show that the method of iterating a solution by searching
for an augmenting path can be transfered. But to search for such a path
corresponds to a new kind of reachability problem. We formulate this as
the reachability by a simple path in an undirected switch graph. In Section

!Given: A graph (V,E) and sets B, C N for every v € V. Question: Is there a
subgraph (V, F') such that every vertex v € V has a degree in B,? B, has a gap > 1
if there exist k,k+p € B, with p > 2 and k+ 1,k+ 2 ¢ B,. A bigamist v would get
B, = {0,2} and a monogamist u would get B, = {0,1} (which has the trivial solution
F = 0) and a maximization algorithm would try to set B, = {1} for an increasing number
of monogamists u.

3, we describe the double reachability algorithm to find a simple path in an
undirected switch graph in O(|v|?) time. In Section 4, we consider corre-
sponding problems which are NP-complete (here we consider the decision
problems) in particular we show it for tetragamy.

This underlines the noteworthiness of the following main result which is
obtained by starting with a possibly non-maximal bigamist matching and
iteratively improving it according to Lemma 1 in at most |M|/2 many steps
where Theorems 2 and 3 allow to find an augmenting path as long as the
bigamist matching is not maximal:

Theorem 1 A maximal bigamist matching for a given bipartite graph can
be constructed in O((|B| + |M|)®) time.

2 Finding an augmenting path as a simple undi-
rected switch graph reachability problem

Like for the usual matching algorithms, we make use of the property that
the symmetric difference of a bigamist matching and an improved bigamist
matching must consist of paths (and cycles, which make no difference). At
least one of them starts and ends with monogamists which are only mar-
ried in the improved matching and on the way there are bigamists and
monogamists which just change marriage and bigamist which were not mar-
ried before or loose both partners.

Lemma 1 If the bigamist matching is not maximal, we can always find such
an augmenting path.

Proof: If there is an improved bigamist matching, it contains more monogamists.
Thus, we start constructing this path with a monogamist which is only mar-
ried in the improved matching, which is (1) in the following cases:

Case (1): The bigamist which is now married to this monogamist was either
married before, in this case we continue with (2) the previously married
monogamist over the same edge color or this bigamist was not married be-
fore, in this case we continue with (3) the other monogamist which is now
married over the other edge color.

Case (2): If the monogamist is not married anymore, there must (by a
counting argument) be another monogamist which is only married in the
improved matching and we start a new path from there; otherwise we con-
tinue with (1).

Case (3): If the monogamist was not married before, the augmenting path is

|
8 V4

Figure 1: Example for an augmenting path where the previous bigamist
matching consists of the dotted and dashed edges and the new matching
consists of the dotted and solid edges. The numbers correspond to the
construction case in the proof of Lemma 1.

complete; otherwise, we continue with (4) the bigamist previously married
to this monogamist.

Case (4): Either this bigamist is still married and we continue with (3) the
other monogamist which is now married over the same edge color or this
bigamist is not married anymore and we continue with (2) the previously
married monogamist over the other edge color.

Since the path can visit bigamist changing partners at most twice and
monogamists at most once, it must terminate.]
Now we will reduce the problem of finding an augmenting path for a given
bigamist matching to finding a simple path in an undirected switch graph
(such graphs appeared also in [Co003]).

Definition 1 An undirected switch graph (V| E,0) consists of “switches”
V', undirected “tracks” E C V xV and a function o : V — E which as-
signs an obligatory incident edge to each switch which means that a path

going through a switch v has to use the “track” o(v) = (v,v') either en-
tering or exiting v. To make this more formal, we will write a path as a
concatenation p = ...(u,v)(v,w)... € E* of edges with the obvious condition

that the second vertex of an edge is the first vertex of the following edge.
We say that p contains an edge (u,v)"™ := (v,u) in opposite direction and
P’ = ...(w,v)(v,u).... Thus, the condition for v saying that p has to use
o(v) means more precisely that o(v) € {(v,u), (v,w)} in this example. Let
|p| denote the number of edges of a path. In the graphical representation, we

might think of a path as the way a train could take®.

2We may regard the setting of the switches as existentially quantified

The simple switch graph reachability problem is the following: Given (V, E, o)
and s,t € V, is there a simple path p form s to t? This means p fulfills the
above condition and each switch appears at most once in p.

Theorem 2 The problem of finding an augmenting path for a bigamist
matching is logspace and linear time reducible to the simple undirected switch
graph reachability problem.

Proof: Given a possibly non-maximal bigamist matching on the bipartite
graph G = (B, M, E,.UE}). The constructed switch graph (V, E, 0) contains
new vertices s,s',t,t' € V with o(s) = o(s') = (s,¢') € E and o(t) =
o(t") = (t,t') € E. Each unmarried monogamist v € B is represented by
two switches u,u’ € V connected by the obligatory edge o(u) = o(u') =
(u,u’) € E and (s',u),(t',u') € E. Each unmarried bigamist v € B is
represented by two switches v,., v, € V' connected by the obligatory edge
o(v,) = o(vy) = (vy,) € E (see left side of the previous picture). Each
married bigamist v € B is represented by two switches v,, v, € V connected
by the edge (v, vp) € E and the monogamists uj,us € M married to v
over a red respectively blue edge are connected by the obligatory edges
o(vy) = o(u1) = (vp,u1) € E and o(vy) = o(u2) = (u2,v) € E (see right
side of the previous picture). Furthermore for each (v,u) € E, we have the
edge (vp,u) € E and for each (v,u) € E} we have the edge (vp,u) € E.
Find the corresponding path to the example in Figure 2 here:

U2 Vilr V1b us

Now it is easy to see that an augmenting path directly corresponds to a
simple path in the switch graph. Note that it can happen that a bigamist
vertex occurs twice in the augmenting path. In this case, it changes both
partners in the improved matching; the corresponding simple path in the
switch graph visits both obligatory edges of this bigamist independently. m

3 The double reachability method

Using an algorithm which marks switches reachable from s (like Dijkstra’s
algorithm) is not sufficient because, as the following example shows, we have
to avoid using the same edge again in opposite direction.

A backtracking algorithm marking the path would require exponential time
in the following situation:

—~_ OO0y

The solution of this problem is based on the following observation:

Lemma 2 If we have two alternative simple paths p1 and ps from w to u
and a simple path p3 containing o(u) from u to t where py and py do not use
the same edge in the same direction, then we can construct a simple path
from w to t. Furthermore, the construction takes < |p1paps|? steps.

Proof: If p; is disjoint with ps for some i < 2, then we can simply concate-
nate p;p3 to a simple path from w to t. Let e = (z,2’) be the last edge in
p3 which also occurs in p; for some ¢ < 2, that means p3 = rep’ and p’ is
disjoint with p; and ps. If e is used in both paths in the same direction,
that means p; = plep, then we can concatenate plep’ to a simple path from
w to t. Otherwise, let w.l.o.g. e occur in py in opposite direction (as the
following picture shows), this means po = phe"p. Since p’ is disjoint with
p1 and po, we can apply Lemma 3 with ¢ = p; to construct a simple path
from w to x and append ep’.

Finding e requires |p/| times searching through p1ps. Together with < |p;pr|?
from Lemma 3, this is dominated by the time |pipops|? > |pipap/|® +

Ip1p2r|? > [pip2| - [P/| + [p1pr?.]

Lemma 3 If we have a simple path r starting with o(v) from v to z, a
simple path p from x to v and a simple path q from w to v, where ¢ and p do
not use the same edge in the same direction, then we can construct a simple
path from w to x. Furthermore, the construction takes O(|prq|?) time.

w we
Proof: If ¢ and r are disjoint, then ¢r is a simple path from w to x. Let
e = (2”,2) be the first edge in ¢ which also occurs in p = piepy or in
r = r’er”. In the first case, we must have ¢ = ¢1¢"*"¢g2 (not the same
direction) and g1e"®'pi’ is a simple path from w to x. If, in the second
case, e is used in ¢ and 7 in the same direction, that means ¢ = gieqs, then
qrer” is a simple path from w to z. In the remaining case (right side of the
above picture) we have ¢ = p”’e"*Vp’ and, since p” is disjoint with p and r, we
can apply Lemma 3 by induction over the length of r to construct a simple
path from w’ = x to 2’ and append it reversed to p”e"c".

Finding e requires [p”| - [pr| searching steps. Together with < |pr'p/|? from
the recursion, this is dominated by the time |prq|?> > |prp”|? + |prp/|* >
[pr] - [P + [pr'p']?. m
Lemma 2 justifies the introduction of a “shortcut edge” from w to v when
two alternative paths p; and po are found. This is used in the following

algorithm.

Theorem 3 The simple undirected switch graph reachability problem can be
solved in polynomial time.

Proof: The idea of the algorithm is a depth-first search in the graph, where
the current path is remembered and switches which were visited from the
direction of a non-obligatory edge keep the information from where they
were visited. If the search enters a switch of the current path, it has to
backtrack. If the search enters a switch visited before from the direction of
a non-obligatory edge, the closest common ancestor w in the search tree gets
a “shortcut edge” together with both path-informations to this switch and
the search backtracks. The search always tries the newest unused “shortcut
edge” from a switch.

To show the termination of this function, we prove the following:

Function Visit(path):
Let (z,v) be the last edge in path;
If v =t then return(path)
else if o(v) = (v,z) then
foundpath :=nil;
Mark all incident non-obligatory edges “unvisited” for v;
While 3 “unvisited” edges for v and foundpath =nil do
Let (v,u) be the newest unvisited edge;
if u & path then foundpath :=Visit(path o (v,u));
mark (v,u) “visited” for v;
return(foundpath)
else
Let (w',w) = o(w) be the last edge in path occuring
also in pathto(v) in the same direction
if w = x or pathto(v)=nil then
pathto(v) := path;
return(Visit(path o o(v)));
else if (w,v) ¢pathto(v) then
add edge (w,v); mark (w,v) “unvisited” for w;
remember both paths from w to v for (w,u);
return(nil)
else return(nil)

Function expand(path):

While 3 a last shortcut edge (w,v) in p = ¢(w,v)ps do
Let p1, ps be the remembered paths from w to v;
Construct a simple path r from w to ¢t by Lemma 2;
path :=qor;

return(path)

Figure 2: The pseudo code for the functions searching and expanding a path

[1Ph)

to t. Concatenating paths is described here by “o”.

Lemma 4 Fach time the search algorithm in Figure 3 visits a verter u using
an obligatory edge, that means with the path p(o(u))"’ = p(v,u), the path p
has to be shorter than at the last such visit of u.

Proof: One of the following two cases must hold:

(i) The edge o(v) = (v,u) was also obligatory for v. This implies either
pathto(u)=nil, which means that u is visited the first time, or the edge
(w',w) = o(w) for the vertex w of the edge (w,v) at the end of path
p =pathto(w’)(w’,w) already occured in the previous visit of v with the
path pathto(v)(v,u). Then pathto(w’)(w’, w)(w,v)(v,u) is shorter than
pathto(v)(v,u) = p'(w', w)p” (v, u) because the algorithm either backtracked
on w, which means pathto(w’) = p’ and p” is unequal and thus longer than
(w,v), or p” = (w,v) and p’ is longer than pathto(w’) by induction on the
length of the path.

(ii) The path p" with p = p’(o(v))"™" has to be shorter than at the last such
visit of v by induction on the length of the path.]
From Lemma 4 it follows that the algorithm will visit every switch at most
|V| times using an obligatory edge and thus, at most |V|? times using an
obligatory edge. Finding w can be done in < |V|? steps. Going through all
unvisited edges v and w and checking if u is not in path can also be done
in < |V|? steps. Thus, the function Visit will terminate in < |V|* steps.
When a path to t is found, it may contain shortcut edges which have to be
expanded by Lemma 2 using the function expand.

All edges in pi1, p2 and ps where visited with a path going through w and
therefore p1, p2, p3 and r must be disjoint with the path ¢ in function expand.
Since p; and po contain only older shortcut edges than (w, v), each shortcut
edge is expanded at most once in function expand. Thus, at most |V|?
shortcut edges are each expanded in < |V'|? steps by Lemma 2. This results
in < |V|* steps to calculate expand and thus, O(|V[*) time for calculating
the path expand(Visit(o(s))). |
Together with Lemma 1 and Theorem 2 this completes the proof for Theorem
1.

Note here in contrast that the simple directed switch graph reachability
problem can be shown to be NP-complete by a reduction from SAT: Each
occurance of a variable is represented by an undirected edge which is oblig-
atory for both of its points. The directed edges make sure that the path
uses one such undirected edge for each clause in one direction and each such
undirected edge for false variables in the other direction.

2,

Figure 3: Example for a part of a tetragamist-input graph for ¢ = ... Aci A
caNeg...withep = (. VA.L),co=(..VAVB..)and cg = (... VAV B...)
(one A occurs before ¢; and B’s may occur after cs.)

Al A2

4 NP-complete cases

In this hardness-section we only need to consider the special case without
the colors and the decision problem. It was shown in [Lov72] by reduction
of planar 3-colorability that the general factor problem is NP-complete if
sets B, = (0,3) can occur. Similarly the trigamist matching problem?® is
NP-complete.

The philosopher Schopenhauer proposed the tetragamy in which two females
and two males marry. The tetragamist matching problem analogously for-
mulates as follows:

Given: A bipartite graph G = (F', M, E) with edges E C F' x M.

Question: Are there |F'|/2 pairwise vertex-disjoint quadruples (v, v, u,u’)
with (v, u), (v,u'), (V,u), (v',u') € E?

With almost the same proof as in [GJ78], we can show the following:

Theorem 4 The tetragamist matching problem is NP-complete

Proof: Given a formula ¢ which we regard as set of clauses by abuse of
notation, we construct a graph as follows (see Figure 4 for an example):

For each clause ¢ € ¢ we have a vertex in M. For each variable A € Vj
(the set of variables occurring in ¢) let n4 be the maximum of the num-
ber of occurrences of A in the formula and the number of occurrences of
A in the formula and we use n4 copies A; in M and 2n4 copies A in F.
Let M' = ¢ U{A1,.. A, | A€ Vy}, FF={A], .. | Ae V4} and E' =

/
2n 4

3here we look for vertex-disjoint quadruples (v, u,u’,v”) with (v,u), (v,u’), (v,v") € E

10

{(Aia A{Zj)a (Az'7 A{zy‘fl% (Ai7 AQ(F‘Z Mod n,\)+2/)u{(‘4{2i,717 C)? (A‘/z(,;Q Mod n 4)+2? C) ’
the i-th occurrence of A is in ¢} U{(A};,¢), (4%, {,¢) | the i-th occurrence of
A is in c}. Since some clauses may contain more than one true variable in
a satisfying assignment and some vertices A, might not have a connection
to a clause, we have to fill up by M = M'U{m; | 0 < i < |F| — |[M'|} and
E=FUFx{m;|0<i<|F|—|M}.

Because |F| = |M| the matching must be perfect and by a counting ar-
gument every A, must be matched with some Aj;. Thus, for every A a
tetragamist matching either contains exactly the edges (A4;, A,), (4, A))
or exactly the edges (A4;, A%,), (A, A‘/_?(ifQMod HA)+2) which corresponds to
A being true or false in the satisfying assignment. (All clauses have to be in
the matching.) This establishes a one to one correspondence of tetragamist
matchings and satisfying assignments for ¢. |
The main difference of the NP-complete problem from [KH83] of “G-factoring”
graphs to the bigamist matching problem is, that the input does not specify
which vertices of the graph can be covered by which vertex in G. This means
that in the example of G = P35, any vertex could be the middle vertex in
the path (that means the bigamist). Here, NP-completeness also holds in
the restriction to bipartite graphs. This can be seen easily with almost the
same proof. In other words: The problem is NP-complete if we allow triples
(v,u,u') with (v,u) € E and (v,u') € E together with triples (v, v’,u') with
(v,u) € E and (v',u) € E.

5 Further possible work

We expect that the running time can be reduced from O((|B| + |M|)?) to a
polynomial of lower degree by accompanying paths with more efficient data
structures.

It seems that the complexity of the problem does not depend on the bipar-
titeness of the input: The algorithm can be modified or extended to replace
the bigamist-triples by chains starting and ending with a monogamist and
two bigamists in the middle or also allowing matchings of two monogamists
or even allowing (the graph-family of) chains starting and ending with a
monogamist and an arbitrary number of bigamists in the middle. So we
may ask the following questions:

Is it possible to obtain a general characterization of (families of) graphs G
together with such specifications which have the property that “G-factoring”
the input graph can be done in polynomial time? Which conditions for more
than 2 colors can be used?

11

What is the complexity of constructing a stable bigamist matching?

What is the complexity of constructing an optimum or a Nash-equilibrium
for a bigamist matching with weighted edges?

Can the method in [ARZ99] for showing that matching is in nonuniform
SPL be combined with the method of this paper? Is the bigamist matching
problem in nonuniform FSPL or any other complexity class within P?

Acknowledgments

I thank Bernd Borchert, Henning Fernau, Jens Gramm and an anonymous
referee for helpful conversations and comments.

References

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation matching and
counting uniform amd nonuniform upper bounds. Journal of
Computer and System Sciences, 59:164—181, 1999.

[Coo03] M. Cook. Still life theory. In Cristopher Moore David Griffeath,
editor, New Constructions in Cellular Automata, volume 226,
pages 93118, Oxford University Press US, Mar 2003. Santa Fe
Institute Studies on the Sciences of Complexity.

[Cor88] G. Cornuejols. General factors of graphs. Journal fo Combina-
torial Theory B, 45:185-198, 1988.

[GJ78] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Freeman, San Fran-
cisco, 1978.

[HK73] John E. Hopcroft and Richard M. Karp. An no/2 algorithm
for maximum matchings in bipartite graphs. SIAM J. Comput.,
2(4):225 231, 1973.

[KH83] D.G. Kirkpatrik and P. Hell. On the complexity of general graph
factor problems. SIAM J. Comput., 12(3):601-608, 1983.

[Lov72] L. Lovasz. The factorization of graphs, II. Acta Math. Acad. Sci.
Hungar., 23:223-246, 1972.

[SGYBO05] R. Sharan, J. Gramm, Z. Yakhini, and A. Ben-Dor. Multiplexing
schemes for generic SNP genotyping assays. Journal of Compu-
tational Biology, 12:514-533, 2005.

12

