Searching Paths of Constant Bandwidth

Klaus Reinhardt

Universität Tübingen

joint work with Bernd Borchert

Overview

Longest path

Paths of constant bandwidth

Fixed-Parameter Tractability

Conclusions and Open Questions

LONGEST PATH

Given: graph *G*, integer *k*

Question: Is there a simple path of length *k* in *G*?

LONGEST PATH is NP-complete [GJ97]

[Monien85]: LONGEST PATH is fixed-parameter tractable in the parameter k.

[AlonYusterZwick95]: improved running time using randomization techniques.

Paths of constant bandwidth

A path of bandwidth w and length k ((w,k)-path) in G is a sequence of k+w vertices ($v_1,...,v_{k+w}$) such that for every i with $1 \le i \le k$ and every j with $1 \le j \le w$ the pair (v_i,v_{i+j}) is an edge of G.

Two drawings of the same (2,5)-path:

A (w,k)-path $(v_1,...,v_{k+w})$ is

- vertex-disjoint if all v_i are different from each other,

- simple if all k w-tupels $(v_1,...,v_w)$, $(v_2,...,v_{w+1})$, ..., $(v_k,...,v_{k+w})$ are different from each other.
- **deterministic** in G if for every $1 \le i \le k$, v_{i+w} is the only vertex in the graph G having the property that all edges $(v_i, v_{i+w}), \ldots, (v_{i+w-1}, v_{i+w})$ are edges of the graph.

A vertex-disjoint and deterministic (3,5)-path:

A (2,10)-path, deterministic and simple but **not** vertex-disjoint:

A (w,k)-path $(v_1,...,v_{k+w})$ is a (w,k)-cycle, if $(v_{k+1},...,v_{k+w}) = (v_1,...,v_w)$. A (2,8)-cycle, deterministic and vertex-disjoint:

BANDWIDTH-w-PATH: set of pairs $\langle G, k \rangle$ such that G contains a simple (w, k)-path. BANDWIDTH-1-PATH = LONGEST-PATH.

Variations: UNDIRECTED- and DISJOINT- ...-CYCLE

Proposition 1 For every $w \ge 1$ the problem BANDWIDTH-w-PATH is NP-complete, likewise its variations.

BANDWIDTH-PATH: set of triples $\langle G, w, k \rangle$ such that G contains a simple (w, k)-path. **PSPACE-complete**

 $L \in \text{NP}$ iff there exists a polynomial p and a PTIME computable language C such that $x \in L \iff \exists \mathbf{y} \leq \mathbf{p}(|\mathbf{x}|) : \langle x, y \rangle \in C$.

Witnesses for a path: (v_1, \dots, v_{k+w})

Size of the witnesses: $(k+w)\log(n)$

Fixed-Parameter Tractability

A computational problem consisting of pairs $\langle x, \mathbf{k} \rangle$ is **fixed-parameter tractable in the parameter** k if there is a deciding algorithm for it having run-time $\mathbf{f}(\mathbf{k}) \cdot |\mathbf{x}|^{\mathbf{c}}$ for some recursive function f and some constant c.

[CaiChenDowneyFellows95]: A language $L \in NP$ consisting of pairs $\langle x, \mathbf{k} \rangle$ is fixed-parameter tractable in the parameter k iff there exists a recursive function s(k) and a PTIME computable language C such that $\langle x, \mathbf{k} \rangle \in L \iff \exists \mathbf{y} \leq \mathbf{s}(\mathbf{k}) : \langle x, \mathbf{k}, y \rangle \in C$.

Theorem 1 For every $w \ge 1$ the problem **BANDWIDTH-w-PATH** is fixed parameter tractable in the parameter k, likewise its variations. More specifically, there exists an FPT guess and check protocol for it with a witness size function $s(k) = {k \choose 2} \cdot \log k$ and a witness checker having runtime $O(w \cdot k^2 \cdot |E|^w \cdot |V|^w)$.

Idea (Example w = 1): If there is a path, there is an witness to construct the lexicographically smallest path.

In the i-th step the algorithm tries to construct for every vertex v a path of length i ending with v.

Step i = 2: Start with the smallest predecessor u of v, use k - 1 numbers $\in \{0, 1\}$ from the witness.

Advice 1: u is needed later, try next u.

General Step *i*: Start with the smallest predecessor u of v, use k-i+1 numbers $\in \{0,i-1\}$ from the advice.

Advice j > 0: the j-th vertex in the path to u is needed later, try next u consistent with previous information (keep list of at most k-1 vertices needed later).

General case w > 1: Use w-tuples of vertices.

Conclusions and Open Questions

We obtained fixed-parameter tractability of BANDWIDTH-w-PATH by presenting an FPT guess and check protocol with a witness size function of $\binom{k}{2} \log k$.

Question: Can this be improved to some quasi-linear function?

Thank you for your attention.