Searching Paths of Constant Bandwidth

Klaus Reinhardt

Universität Tübingen

joint work with Bernd Borchert

Overview

- Longest path
- Paths of constant bandwidth
- Fixed-Parameter Tractability
- Conclusions and Open Questions

LONGEST PATH

Given: graph G, integer k
Question: Is there a simple path of length k in G ?

LONGEST PATH is NP-complete [GJ97]
[Monien85]: LONGEST PATH is fixed-parameter tractable in the parameter k.
[AlonYusterZwick95]: improved running time using randomization techniques.

Paths of constant bandwidth

A path of bandwidth w and length $k((w, k)$-path) in G is a sequence of $k+w$ vertices $\left(v_{1}, \ldots, v_{k+w}\right)$ such that for every i with $1 \leq i \leq k$ and every j with $1 \leq j \leq w$ the pair $\left(v_{i}, v_{i+j}\right)$ is an edge of G.

Two drawings of the same (2,5)-path:

A (w, k)-path $\left(v_{1}, \ldots, v_{k+w}\right)$ is

- vertex-disjoint if all v_{i} are different from each other,
- simple if all $k w$-tupels $\left(v_{1}, \ldots, v_{w}\right),\left(v_{2}, \ldots, v_{w+1}\right), \ldots,\left(v_{k}, \ldots, v_{k+w}\right)$ are different from each other.
- deterministic in G if for every $1 \leq i \leq k, v_{i+w}$ is the only vertex in the graph G having the property that all edges $\left(v_{i}, v_{i+w}\right), \ldots,\left(v_{i+w-1}, v_{i+w}\right)$ are edges of the graph.

A vertex-disjoint and deterministic (3,5)-path:

A $(2,10)$-path, deterministic and simple but not vertex-disjoint:

A (w, k)-path $\left(v_{1}, \ldots, v_{k+w}\right)$ is a (w, k)-cycle, if $\left(v_{k+1}, \ldots, v_{k+w}\right)=$ $\left(v_{1}, \ldots, v_{w}\right)$. A $(2,8)$-cycle, deterministic and vertex-disjoint:

BANDWIDTH-w-PATH: set of pairs $\langle G, k\rangle$ such that G contains a simple (w, k)-path. BANDWIDTH-1-PATH = LONGEST-PATH.

Variations: UNDIRECTED- and DISJOINT- ...-CYCLE

Proposition 1 For every $w \geq 1$ the problem BANDWIDTH-w-PATH is NP-complete, likewise its variations.

BANDWIDTH-PATH: set of triples $\langle G, w, k\rangle$ such that G contains a simple (w, k)-path. PSPACE-complete
$L \in$ NP iff there exists a polynomial p and a PTIME computable language C such that $x \in L \Longleftrightarrow \exists \mathbf{y} \leq \mathbf{p}(|\mathbf{x}|):\langle x, y\rangle \in C$.

Witnesses for a path: $\left(v_{1}, \ldots, v_{k+w}\right)$

Size of the witnesses: $(k+w) \log (n)$

Fixed-Parameter Tractability

A computational problem consisting of pairs $\langle x, \mathbf{k}\rangle$ is fixed-parameter tractable in the parameter k if there is a deciding algorithm for it having run-time $\mathbf{f}(\mathbf{k}) \cdot|\mathbf{x}|^{\mathbf{c}}$ for some recursive function f and some constant c.
[CaiChenDowneyFellows95]: A language $L \in$ NP consisting of pairs $\langle x, \mathbf{k}\rangle$ is fixed-parameter tractable in the parameter k iff there exists a recursive function $s(k)$ and a PTIME computable language C such that $\langle x, \mathbf{k}\rangle \in L \Longleftrightarrow \exists \mathbf{y} \leq \mathbf{s}(\mathbf{k}):\langle x, \mathbf{k}, y\rangle \in C$.

Theorem 1 For every $w \geq 1$ the problem BANDWIDTH-w-PATH is fixed parameter tractable in the parameter k, likewise its variations. More specifically, there exists an FPT guess and check protocol for it with a witness size function $s(k)=\binom{k}{2} \cdot \log k$ and a witness checker having runtime $O\left(w \cdot k^{2} \cdot|E|^{w} \cdot|V|^{w}\right)$.

Idea (Example $w=1$): If there is a path, there is an witness to construct the lexicographically smallest path.

In the i-th step the algorithm tries to construct for every vertex v a path of length i ending with v.

Step $i=2$: Start with the smallest predecessor u of v, use $k-1$ numbers $\in\{0,1\}$ from the witness.

Advice 1: u is needed later, try next u.

General Step i : Start with the smallest predecessor u of v, use $k-i+1$ numbers $\in\{0, i-1\}$ from the advice.

Advice $j>0$: the j-th vertex in the path to u is needed later, try next u consistent with previous information (keep list of at most $k-1$ vertices needed later).

General case $w>1$: Use w-tuples of vertices.

Conclusions and Open Questions

We obtained fixed-parameter tractability of BANDWIDTH-w-PATH by presenting an FPT guess and check protocol with a witness size function of $\binom{k}{2} \log k$.

Question: Can this be improved to some quasi-linear function?

Thank you for your attention.

